Clams Convert Air Into Food

January 16, 2008
Clams Convert Air Into Food
Bacteria in a shipworm allow it to manufacture food from the nitrogen content in air. Credit: Ruth Turner, Harvard Museum of Comparative Zoology

Only plants can take nitrogen gas from the air and use it to make the protein they need to grow. Or so biologists thought.

Now scientists at Ocean Genome Legacy in Ipswich, Mass., and their colleagues at Harvard Medical School have shown that animals, too, can convert air into food. The National Science Foundation (NSF) funded their research.

The animals are marine clams called shipworms. They burrow into and eat wood, causing more than a billion dollars in damage to ships and piers each year.

"Wood has very little nutritional value," said biologist Dan Distel, executive director of Ocean Genome Legacy. "It contains almost no protein. But these clams use bacterial symbionts living inside a special organ in their gills to convert dissolved air [which is about 80 percent nitrogen] into the protein they need."

The discovery reveals a new way for animals to feed and suggests that other animals in the sea and elsewhere may be able to survive with only air as a source of protein.

Understanding how these clams make use of this process is also helping researchers gain insights into how plants fix nitrogen, responsible for a large percentage of the protein made by plants and ultimately eaten by livestock and humans, said Distel and colleagues Claude Lechene and Gregory McMahon of Harvard Medical School and Yvette Luyten of Ocean Genome Legacy.

Using multi-isotope imaging mass spectrometry (MIMS), they directly imaged and measured nitrogen fixation by individual bacteria in host cells, and demonstrated that fixed nitrogen is used for host metabolism. "This approach," said Lechene, "introduces a powerful new way to study microbes and global nutrient cycles."

Bacteria and archaea responsible for biological nitrogen fixation can be found in free-living form or in symbiosis with algae, higher plants and some animals. Although these microbes are a critical part of the global nitrogen cycle, "there has previously been no means to evaluate this fixation process at a subcellular resolution," said Lechene. "This is now possible with MIMS."

Wood and woody plant materials are abundant in the biosphere and are important carbon sources for fungi and microorganisms. But few animals are able to feed primarily on wood.

Although rich in carbon, said Distel, wood contains two orders of magnitude less nitrogen per unit of carbon than does animal tissue. Animals using wood as food must therefore obtain other sources of combined nitrogen for biosynthesis. Wood-eating termites, for example, supplement their diet with nitrogenous compounds produced by nitrogen-fixing bacteria in their gut.

Along came shipworms, able to do the same thing.

"Although conspicuous communities of nitrogen-fixing bacteria have not been found in the guts of shipworms," said Distel, "dense populations of intracellular symbionts have been observed in cells in shipworm gills." A bacterium capable of fixing nitrogen gas has been isolated from the gills of shipworms.

Distel, Lechene and co-workers localized and measured nitrogen fixation by individual cells of the bacteria using MIMS to measure the incorporation of nitrogen gas enriched in the rare stable isotope 15N. "MIMS technology has allowed us to localize, quantify, and compare nitrogen fixation in single cells and subcellular structures," said Distel.

Indeed, it turns out, animals--or at least this clam--can make food from thin air.

Source: NSF

Explore further: Trace element plays major role in tropical forest nitrogen cycle

Related Stories

Barren deserts can host complex ecosystems in their soils

December 22, 2014

"Biological soil crusts" don't look like much. In fact, people often trample right over these dark, or green-tinted, sometimes raised patches in the desert soil. But these scruffy stretches can house delicate ecosystems as ...

Interactions of Earth's smallest players have global impact

September 19, 2014

A new study reveals the interactions among bacteria and viruses that prey on them thriving in oxygen minimum zones—stretches of ocean starved for oxygen that occur around the globe. Understanding such microbial communities ...

Decoding virus-host interactions in the oxygen-starved ocean

September 15, 2014

For multicellular life—plants and animals—to thrive in the oceans, there must be enough dissolved oxygen in the water. In certain coastal areas, extreme oxygen-starvation produces "dead zones" that decimate marine fisheries ...

Recommended for you

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.

How much for that Nobel prize in the window?

October 3, 2015

No need to make peace in the Middle East, resolve one of science's great mysteries or pen a masterpiece: the easiest way to get yourself a Nobel prize may be to buy one.

Drone market to hit $10 billion by 2024: experts

October 3, 2015

The market for military drones is expected to almost double by 2024 to beyond $10 billion (8.9 billion euros), according to a report published Friday by specialist defence publication IHS Jane's Intelligence Review.

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.