Cancer drug activates adult stem cells

January 28, 2008

The use of a drug used in cancer treatment activates stem cells that differentiate into bone appears to cause regeneration of bone tissue and be may be a potential treatment strategy for osteoporosis, according to a report in the February 2008 Journal of Clinical Investigation.

The study – led by Harvard Stem Cell Institute (HSCI) and Massachusetts General Hospital researchers– found that treatment with a medication used to treat bone marrow cancer improved bone density in a mouse model of osteoporosis, apparently through its effect on the mesenchymal stem cells (MSCs) that differentiate into several types of tissues.

“Stem cell therapies are often thought of as putting new cells into the body, but this study suggests that medications can turn on existing stem cells that reside in the body’s tissues, acting as regenerative medicines to enhance the body’s own repair mechanisms,” says David Scadden, a hematologist-oncologist who is co-director of HSCI and director of the MGH Center for Regenerative Medicine. “Drugs that direct immature cells to become a particular cell type, as in this study, could potentially be very useful.”

The study was designed to examine whether the drug bortezamib (Bzb), which can alleviate bone destruction associated with the cancer multiple myeloma, could also regenerate bone damaged by non-cancerous conditions. In their first experiments, the researchers showed that treating mice with Bzb increased several factors associated with bone formation. Similar results were seen when cultured MSCs were treated with Bzb, but not when the drug was applied to cells that were committed to become particular cell types. Found in the bone marrow, MSCs have the potential to develop into the bone-building osteoblasts and several other types of cells – including cartilage, fat, skin and muscle.

Subsequent experiments supported the hypothesis that Bzb increases osteoblast activity and bone formation by acting on MSCs, but not on more differentiated osteoblast precursors. Use of Bzb to treat a mouse model of menopausal osteoporosis produced significant improvements in bone formation and density. Since current treatments for osteoporosis – which target differentiated cells like osteoblasts and the osteoclasts that break down bone – have limitations, the ability to direct differentiation of MSCs could be a promising approach to treating osteoporosis and cancer-associated bone loss, the researchers note.

“If the paradigm displayed in this study holds true for other tissues, we may have options for repairing and regenerating sites affected by injury or disease with medications – that would be pretty exciting.” says Scadden, who is the Gerald and Darlene Jordan Professor of Medicine at Harvard Medical School.

Siddhartha Mukherjee, of the MGH Center for Regenerative Medicine (CRM) and HSCI is lead author of the study, which was supported by grants from the National Institutes of Health.

Source: Harvard Stem Cell Institute

Explore further: Silk bio-ink could help advance tissue engineering with 3-D printers

Related Stories

Making bone in the lab

August 20, 2015

Every year there are around 60,000 hip, 50,000 forearm and 40,000 vertebral fractures in the UK. At the Bone and Joint Research Group at the University of Southampton, Professor Richard Oreffo and team have made pioneering ...

Researchers develop fast test for invasive carp

August 11, 2015

A Case Western Reserve University graduate student turned a research paper into a field test that quickly determines whether an Asian carp invading Lake Erie is sterile or can reproduce.

You need this hole in the head—to be smart

July 15, 2015

University of Adelaide researchers have shown that intelligence in animal species can be estimated by the size of the holes in the skull through which the arteries pass.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.