New buffer resists pH change, even as temperature drops

Jan 14, 2008

Researchers at the University of Illinois have found a simple solution to a problem that has plagued scientists for decades: the tendency of chemical buffers used to maintain the pH of laboratory samples to lose their efficacy as the samples are cooled. The research team, headed by chemistry professor Yi Lu, developed a method to formulate a buffer that maintains a desired pH at a range of low temperatures.

The study appears this month in Chemical Communications. Scientists have known since the 1930s that the pH of chemical buffers that are used to maintain the pH of lab samples can change as those samples are cooled, with some buffers raising and others lowering pH in the cooling process.

Freezing is a standard method for extending the shelf life of biological specimens and pharmaceuticals, and biological samples are routinely cooled to slow chemical reactions in some experiments. Even tiny changes in the acidity or alkalinity of a sample can influence its properties, Lu said.

“We like to freeze proteins, nucleic acids, pharmaceutical drugs and other biomolecules to keep them a long time and to study them more readily under very low temperatures using different spectroscopic techniques and X-ray crystallography,” Lu said. “But when the pH changes at low temperature, the sample integrity can change.”

Graduate student Nathan Sieracki demonstrated this by repeatedly freezing and thawing oxacillin, a penicillin analog used to treat infections.

“After one freeze-thaw 50 percent of the drug was dead in several of the buffers investigated,” Sieracki said.

Sieracki was able to demonstrate that the loss of activity was due to changes in pH and not a result of the temperature changes.

To find a buffer that would maintain a stable pH at varying temperatures, Sieracki first evaluated the behavior of several commonly used buffers over a range of temperatures. He saw that some buffers became more alkaline at lower temperatures while others grew more acidic.

These observations led to an obvious methodology: “Why don’t we just mix them together"” Sieracki said.

Little by little, he varied the proportions of the combined buffers until he found a formula that exhibited minimal pH changes at a variety of temperatures. Instead of registering changes of 2 or more pH units while cooling, which was typical of some standard buffers, the new formula changed less than 0.2 pH units during cooling, he said.

“We’re canceling out 100-fold changes in proton concentration and bringing them down within an order of magnitude,” Sieracki said.

The creation of a temperature-independent pH (TIP) buffer could have broad implications for new – and previously published – research, Lu said.

“We’re not in the business of looking at the literature and correcting other mistakes,” he said. “But some of the conclusions from previous studies could be on shaky ground if a buffer was used that changed pH dramatically at low temperatures.”

The new buffer is immediately useful for biological research, and Sieracki said he is confident that a similar buffer could be made for use in many fields, such as biochemistry, biophysics, chemical biology and biomedical research.

Source: University of Illinois at Urbana-Champaign

Explore further: Researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion

Related Stories

Forest canopies buffer against climate change

Apr 29, 2015

When temperatures rise and less water falls, forests respond. Forest canopies can buffer juvenile trees from drought and heat by providing shade for the younger trees below the leaf and needle cover. Adult trees have deep ...

Recommended for you

New chip makes testing for antibiotic-resistant bacteria faster, easier

11 hours ago

We live in fear of 'superbugs': infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-re ...

Researchers find 'decoder ring' powers in micro RNA

13 hours ago

MicroRNA can serve as a "decoder ring" for understanding complex biological processes, a team of New York University chemists has found. Their study, which appears in Proceedings of the National Academy of Sciences, points ...

DNA mutations get harder to hide

17 hours ago

Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.

Use your smartphone for biosensing

19 hours ago

An Australian research team has shown that smartphones can be reconfigured as cost-effective, portable bioanalytical devices, with details reported in the latest edition of the Open Access Journal 'Sensors'.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Graeme
not rated yet Jan 14, 2008
But what is the combination?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.