UVA reports surprising findings related to myotonic muscular dystrophy

Dec 17, 2007

New research from the University of Virginia Health System shows that, in cases of Type 1 myotonic muscular dystrophy (DM1), a well known heart protein does several surprising things. DM1 is the most common form of muscular dystrophy in adults and affects approximately 40,000 adults and children in the U.S.

The protein, NKX2-5, is a biomarker for heart stem cells. It is also very important for the normal development of the heart. “Too little of it causes major cardiac problems including slow and irregular heartbeats,” observes Dr. Mani Mahadevan, a human genetics researcher and Professor of Pathology at UVa who led the study.

The researchers were surprised to find that mice and individuals with DM1 actually overproduce NKX2-5, yet experience the same kind of heart problems associated with too little of it.

Excessive NKX2-5 may explain why as many as 60 to 70 percent of individuals with DM1 develop heart problems which cause their heartbeats to become slow and irregular, often necessitating the need for pacemakers. If these irregular heartbeats are not detected, sudden death can occur.

By using the mouse model of DM1 and mice genetically engineered to produce less NKX2-5, Dr. Mahadevan and his team showed that reducing the excessive levels of NKX2-5 seemed to protect the mice from the heart problems.

Researchers were also surprised to find NKX2-5 in the muscles of mice and individuals with DM1. “Usually, NKX2-5 is found only in the heart of adults,” Dr. Mahadevan notes. “It’s like the muscle is having some kind of ‘identity crisis’ and starting to make proteins that shouldn’t be there normally.”

This discovery could prove beneficial, says Dr. Mahadevan, and lead to development of a simple diagnostic test to follow a patient’s response to potential therapies.

Myotonic muscular dystrophy is recognized as the first example of a disease caused by a toxic RNA. RNAs are intermediary molecules that convey the genetic code in the DNA to the rest of the cell. RNAs are normally “cut and pasted together” by a process called RNA splicing. It is currently thought that the toxic RNA causes DM1 by disrupting normal RNA splicing.

“Much of the research on DM1 is focused on factors that cause RNA splicing defects. Our work may provide explanations for pathogenic effects not accounted for by RNA mis-splicing,” Mahadevan explained.

Source: University of Virginia Health System

Explore further: A high-fat diet may alleviate mitochondrial disease

Related Stories

Water point 'bank machines' boost Kenya slums

2 hours ago

Around the world people use bank machines to access cash: but in the Kenyan capital's crowded slums, people now use similar machines to access an even more basic requirement—clean water.

Nemo's garden off Italy offers hope for seabed crops

2 hours ago

In the homeland of pesto, a group of diving enthusiasts have come up with a way of growing basil beneath the sea that could revolutionise crop production in arid coastal areas around the world.

Recommended for you

A high-fat diet may alleviate mitochondrial disease

11 hours ago

Mice that have a genetic version of mitochondrial disease can easily be mistaken for much older animals by the time they are nine months old: they have thinning grey hair, osteoporosis, poor hearing, infertility, ...

Cheek muscles hold up better than leg muscles in space

11 hours ago

It is well known that muscles need resistance (gravity) to maintain optimal health, and when they do not have this resistance, they deteriorate. A new report published in the July 2015 issue of The FASEB Journal, however, sugges ...

Sialic acid: A key to unlocking brain disorders

14 hours ago

A new report published in the July 2015 issue of The FASEB Journal suggests that a common molecule found in higher animals, including humans, affects brain structure. This molecule may play a significant role in how brain ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.