Sulfur dioxide may have helped maintain a warm early Mars

December 20, 2007
Mars

Sulfur dioxide (SO2) may have played a key role in the climate and geochemistry of early Mars, geoscientists at Harvard University and the Massachusetts Institute of Technology suggest in the Dec. 21 issue of the journal Science. Their hypothesis may resolve longstanding questions about evidence that the climate of the Red Planet was once much warmer than it is today.

The Science paper's authors are Itay Halevy, a Ph.D. candidate in Harvard's Department of Earth and Planetary Sciences; Daniel Schrag, professor of earth and planetary sciences and environmental engineering at Harvard; and Maria Zuber, professor of earth, atmospheric, and planetary sciences at MIT.

"There is abundant evidence for a warmer climate, perhaps even a liquid water ocean, early in Martian history, between 3.5 and 4 billion years ago," says Schrag, the paper's senior author. "However, scientists have found it difficult to reconcile this evidence with our understanding of how the climate system is regulated on Earth."

Over millions of years, the Earth's climate has been controlled by the carbon cycle and its effect on carbon dioxide, the main greenhouse gas. On Earth, there is a balance between carbon dioxide vented from volcanoes and chemical reactions with silicate rocks on the Earth's surface that remove carbon dioxide from the atmosphere and convert it to calcium carbonate, commonly known as limestone. Scientists believe that this balance has helped maintain Earth's habitability over the last 4 billion years.

On Mars, there is not enough volcanic activity today to maintain this cycle. But this was not true some 4 billion years ago, when a giant volcanic complex called Tharsis erupted over tens to hundreds of millions of years -- and also a time when evidence suggests Mars had a much warmer climate. However, this carbon cycle on early Mars should have produced vast quantities of limestone like on Earth, and yet almost none has been found.

The new hypothesis points the finger at sulfur dioxide, another gas released by volcanoes. Sulfur dioxide is a powerful greenhouse gas, like carbon dioxide, and it is more reactive with silicate rocks than carbon dioxide. On Earth, sulfur dioxide is rapidly oxidized to sulfate, and then removed from the atmosphere. The authors argue that the atmosphere of early Mars would have lacked oxygen, so sulfur dioxide would remain much, much longer.

"The sulfur dioxide would essentially preempt the role of carbon dioxide in surface weathering reactions," says Halevy, the first author of the report. "The presence of even a small amount of sulfur dioxide in the atmosphere would contribute to the warmer climate, and also prevent limestone deposits from forming."

In place of limestone, the authors predict that sulfur minerals would form in any standing water on Mars. This may explain the surprising finding of the rovers that have identified sulfur minerals as an abundant component of Martian soils.

"We think we now understand why there is so little carbonate on Mars, and so much sulfur," Halevy says.

"Our hypothesis may also be important for understanding the early Earth," Schrag says. "Before the origin of life, our atmosphere may have looked much like early Mars. Sulfur dioxide may have had an important role then as well."

If correct, the hypothesis implies that the oceans in which life evolved were much more acidic than previously thought. The early Earth may also provide a test for the hypothesis through the analysis of isotopes of sulfur in ancient mineral deposits.

Source: Harvard University

Explore further: Air-quality sensors on cars at heart of Aclima-Google partnership

Related Stories

Accounting for short-lived forcers in carbon budgets

July 15, 2015

Limiting warming to any level requires CO2 emissions to be kept to within a certain limit known as a carbon budget. Can reducing shorter-lived climate forcers influence the size of this budget? A new IIASA study published ...

Image: Smoke from Canadian wildfires drifts down to US

June 10, 2015

Canada has already had its share of wildfires this season, and the smoke from these wildfires is slowly drifting south over the United States' Midwest. The drifting smoke can be seen in this Terra satellite image over Lake ...

Elucidation of chemical ingredients in rice straw

June 17, 2015

For the first time, researchers at Kobe University and RIKEN successfully elucidated the biochemical and biofuel-producing materials contained in rice straw. Future applications include using these materials in species of ...

Recommended for you

Global index proposed to avoid delays on climate policies

August 4, 2015

Professor David Frame, Director of Victoria's Climate Change Research Institute (CCRI), has co-authored a paper published today in the high profile international scientific journal Nature Climate Change. The paper argues ...

Researchers investigate increased ocean acidification

August 3, 2015

The primary cause of global ocean acidification is the oceanic absorption of CO2 from the atmosphere. Although this absorption helps to mitigate some of the effects of anthropogenic climate change, it has resulted in a reduction ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
not rated yet Dec 21, 2007
It is not clear why sulfates(CaSO4) would dominate over carbonates(CaCO3) on Mars. Seems like more oxygen would be required.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.