Safe and effective therapy discovered for patients with protein-losing enteropathy

Dec 07, 2007

Researchers at the Burnham Institute for Medical Research (Burnham Institute) have developed the first model to study intestinal protein leakage in mice, allowing the team to control and replicate both genetic deficiencies and environmental damages in an in vivo setting. Protein-losing enteropathy (PLE) encompasses conditions that involve the abnormal leakage of blood proteins into the digestive tract.

One type of PLE is observed in children who have undergone Fontan surgery, a procedure used to alleviate certain congenital heart defects. Half of post-Fontan patients who develop PLE die from this condition, due largely to therapeutic options that are inadequate and accompanied by serious side effects.

A study performed by the laboratory of Hudson Freeze, Ph.D., at the Burnham Institute has been published in the Journal of Clinical Investigation (JCI), describing both the science behind PLE and also a way to treat the disease that side steps some of the severe complications of current treatments.

Dr. Freeze’s group, led by Lars Bode, Ph.D., identified commonalities in clinical observations of PLE patients that recognized several key features of PLE pathogenesis; in particular, it is episodic and its onset is often associated with viral infection and a proinflammatory state. The most intriguing commonality that the group observed in PLE patients is the specific loss of heparan sulfate (HS) from intestinal epithelial cells during PLE episodes. Importantly, the study revealed that loss of HS is a key factor in promoting protein leakage and makes the intestine more susceptible to inflammation and increased hypertension. Co-author Simon Murch, M.D., University of Warwick, UK, first noticed the loss of intestinal cell HS in one of their previous collaborations.

“When heparan sulfate is missing, the inflammatory molecules pack a much greater punch and impact than when HS is there on the cell surface,” said Dr. Freeze, who is Professor and Co-Director of the Tumor Microenvironment Program at Burnham Institute.

The group had previously observed that soluble heparin compensates for loss of heparan sulfate and prevents protein leakage in vitro. However, long-term therapy with anticoagulant heparin has severe side effects, including bleeding, thrombocytopenia and osteoporosis. However, the study also revealed an alternative form of heparin as a potential therapy. By adapting well-established clinical assays to assess intestinal protein leakage in mice, Dr. Freeze’s team found that a heparin analog, 2,3-de-O-sulfated heparin, also prevented protein leakage both in vitro and in mice without causing bleeding. This compound exhibits greatly reduced anticoagulant activity, compared to unmodified heparin, which may mean that it can be used safely at much higher doses to treat PLE.

Source: Burnham Institute

Explore further: Supercharging stem cells to create new therapies

Related Stories

Barnes & Noble names Sears Canada CEO for retail business

27 minutes ago

Barnes & Noble, which is splitting into two companies next month, named Sears Canada CEO Ronald Boire to lead its retail operations and said company CEO Michael Huseby will become executive chairman its educational wing.

International consortium to study plant fertility evolution

30 minutes ago

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Recommended for you

Researchers reveal a genetic blueprint for cartilage

Jul 02, 2015

Cartilage does a lot more than determine the shapes of people's ears and noses. It also enables people to breathe and to form healthy bones—two processes essential to life. In a study published in Cell Re ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.