Polymerization From the Individual Molecule's Point of View

Dec 18, 2007

Plastics are becoming more and more important and are an indispensable part of modern life. Scientists are thus interested in clearing up the details of polymerization processes, in which individual molecular building blocks are linked into long polymer chains or three-dimensional networks.

A Belgian and German team from the University of Leuwen and the Max Planck Institute for Polymer Research in Mainz has now been able to follow polymerizations from the point of view of individual molecules.

As they report in the journal Angewandte Chemie, Johan Hofkens and his team used the techniques of fluorescence correlation spectroscopy and far-field microscopy to observe fluorescing sample molecules throughout the entire process of the radical polymerization of styrene.

Previous methods applied to this problem provided interesting insights into the reaction pathways of polymerizations; however, most are not capable of monitoring the entire reaction process. In addition, they only provide a picture of the reaction that is averaged over all of the molecules. Irregularities that occur during the polymerization cannot be recorded at the molecular level, although such heterogeneities have a large influence on the properties of the final polymer. Knowledge of such details can help to make polymerization processes easier to control and to improve the properties of the products.

Single-molecule spectroscopy does not average out differences between individual molecules; instead it highlights them. The researchers followed the polymerization by using fluorescing probes.

During the reaction, which converts a solution of monomers into an ever-denser polymer matrix, the freedom of movement of the probe molecules is constantly decreasing. Fluorescence correlation spectroscopy makes it possible to measure the time during which individual probe molecules stay within a tiny defined space. This then enables the registration of the rapid molecular motions occurring in the barely reacted solution.

Far-field microscopy directly displays the positions of the fluorescing probes and is well suited for following slow and immobilized molecules. The two methods are complementary and together they provide a picture of the translational motions throughout the entire polymerization process. Additional information is provided by probe molecules built in to the growing polymer.

Citation: Johan Hofkens, Radical Polymerization Tracked by Single Molecule Spectroscopy, Angewandte Chemie International Edition, doi: 10.1002/anie.200704196

Source: Angewandte Chemie

Explore further: NRL licenses new polymer resin for commercial applications

Related Stories

Quantum Criticality in life's proteins (Update)

Apr 15, 2015

(Phys.org)—Stuart Kauffman, from the University of Calgary, and several of his colleagues have recently published a paper on the Arxiv server titled 'Quantum Criticality at the Origins of Life'. The id ...

Simple method of binding pollutants in water

Mar 26, 2015

New types of membrane adsorbers remove unwanted particles from water and also, at the same time, dissolved substances such as the hormonally active bis-phenol A or toxic lead. To do this, researchers at the ...

Recommended for you

Tiny silicone spheres come out of the mist

12 hours ago

Technology in common household humidifiers could enable the next wave of high-tech medical imaging and targeted medicine, thanks to a new method for making tiny silicone microspheres developed by chemists ...

Inkjet printing process for kesterite solar cells

14 hours ago

A research team at HZB has developed an inkjet printing technology to produce kesterite thin film absorbers (CZTSSe). Based on the inkjet-printed absorbers, solar cells with total area conversion efficiency ...

The next step in DNA computing: GPS mapping?

16 hours ago

Conventional silicon-based computing, which has advanced by leaps and bounds in recent decades, is pushing against its practical limits. DNA computing could help take the digital era to the next level. Scientists ...

Thermometer-like device could help diagnose heart attacks

16 hours ago

Diagnosing a heart attack can require multiple tests using expensive equipment. But not everyone has access to such techniques, especially in remote or low-income areas. Now scientists have developed a simple, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.