Moss is a super model for feeding the hungry

December 13, 2007
Moss is a super model for feeding the hungry
Photo shows the spore capsule of Physcomitrella. This is actually the diploid phase of the life cycle, which is very restricted in mosses. Credit: University of Leeds

One of the simplest plants on the planet could help scientists create crops to survive the ravages of drought.

The moss Physcomitrella patens is a primitive plant, similar to the first plants which began to grow on land around 450 million years ago. Just one cell thick, these early plants had to adapt to withstand cold, heat and drought without roots or complex leaves. The ability of mosses to survive severe dehydration and then regrow when watered could be of enormous use in crops grown in drought-stricken areas of the developing world.

Scientists from the University of Leeds, with colleagues from Germany, Japan and the USA, have sequenced the genome for Physcomitrella – the first non-flowering or ‘lower’ plant to be sequenced – and their findings are published in the latest issue of the journal Science.

Now that they have sequenced the moss’s DNA, scientists will be able to identify which genes control these survival tactics and adapt crops to do the same.

The study of Physcomitrella was started at the University of Leeds over 20 years ago by Professor David Cove. Dr Andy Cuming has continued Professor Cove’s work, supported by the Biotechnology and Biological Sciences Research Council, and is part of the international team working on the genome.

“Physcomitrella is a really useful plant to study,” explains Dr Cuming. “In addition to being the link between water-based algae and land plants, it also has many important characteristics which make it special. By sequencing the genome, we can start to identify their genetic basis and use the knowledge for crop improvement.”

Physcomitrella has a single ‘haploid’ genome – rather than a double genome from male and female parents – which makes it easier to identify which characteristics link to which gene. The moss is also able to integrate new DNA into a defined target in the genome – unlike most plants which integrate new DNA randomly. This means that modification of the moss genome is far more controlled than with other plants and allows the moss to be adapted as a ‘green factory’ to produce pharmaceutical products.

“If we can discover what mechanisms cause the Physcomitrella genome to integrate DNA in this way – we may be able to transfer those to other plants, to allow more controlled modification of their genomes,” said Dr Cuming. “However, we also believe many of the useful genes in Physcomitrella are probably still present in ‘higher’ crop plants, but are no longer active in the same way. So rather than adding new DNA – we’ll just be activating what’s already there to create the properties we want.”

The sequencing has been carried out at the Joint Genome Institute in Berkeley, California, which invites scientists around the world to compete each year to use their sequencing facilities for a particular genome. Physcomitrella patens ‘won’ the competition in 2005. The work has been coordinated by the University of Leeds, the University of Freiburg in Germany, the National Institute for Basic Biology in Japan, Washington University at St Louis, Missouri and the University of California at Berkeley.

“Until now, only a handful of flowering plant genomes have been sequenced, compared with a large number of diverse animal genomes,” says Dr Cuming. “But knowledge of a range of genomes is really important for scientific study. To help in understanding the human genome, scientists use the DNA of fruit flies, nematode worms and mice, to name only a few. We need that range in plant sciences too – and Physcomitrella patens is a fantastic one to add to the list.”

Source: University of Leeds

Explore further: Oral nimbolide reduces prostate tumour size by up to 70%, decreases metastasis 50%

Related Stories

Researchers prove fast microbial evolutionary bursts exist

September 23, 2016

There are more than a dozen species of finch that evolved on the Galapagos Islands, each identified by beak shape and size. Some have strong beaks to crack nuts while others have long, fine beaks to grasp larvae with surgical ...

Recommended for you

Fermi finds record-breaking binary in galaxy next door

September 29, 2016

Using data from NASA's Fermi Gamma-ray Space Telescope and other facilities, an international team of scientists has found the first gamma-ray binary in another galaxy and the most luminous one ever seen. The dual-star system, ...

Game theory research reveals fragility of common resources

September 29, 2016

New research in game theory shows that people are naturally predisposed to over-use "common-pool resources" such as transportation systems and fisheries even if it risks failure of the system, to the detriment of society ...

Scientists: World likely won't avoid dangerous warming mark

September 29, 2016

A team of top scientists is telling world leaders to stop congratulating themselves on the Paris agreement to fight climate change because if more isn't done, global temperatures will likely hit dangerous warming levels in ...

Creating new devices that emulate human biological synapses

September 29, 2016

Engineers at the University of Massachusetts Amherst are leading a research team that is developing a new type of nanodevice for computer microprocessors that can mimic the functioning of a biological synapse—the place ...

Ancient reptile fossils claw for more attention

September 29, 2016

Newly recovered fossils confirm that Drepanosaurus, a prehistoric cross between a chameleon and an anteater, was a small reptile with a fearsome finger. The second digit of its forelimb sported a massive claw.

Tech titans join to study artificial intelligence

September 29, 2016

Major technology firms have joined forces in a partnership on artificial intelligence, aiming to cooperate on "best practices" on using the technology "to benefit people and society."

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

arlene
not rated yet Dec 17, 2007
i never thought that moss is an interesting plant, until now.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.