Mechanism for regulation of growth and differentiation of adult muscle stem cells is revealed

December 7, 2007

During muscle regeneration, which is a natural response to injury and disease, environmental cues cause adult muscle stem cells (satellite cells) to shift from dormancy to actively building new muscle tissue.

Although the signaling pathways controlling muscle regeneration are fairly well known, how these signals lead to altered chromatin structure remains undiscovered. A group of scientists at the Burnham Institute for Medical Research in La Jolla, CA, analyzed the mechanism by which certain cellular signaling cues cause epigenetic modifications when released within the regenerative microenvironment, thus controlling the expression of genes that regulate growth and differentiation of muscle stem cells that repair injured muscle.

In a recent publication in Molecular Cell, the scientific group, led by Pier Lorenzo Puri, MD, Ph.D., shows how two signaling pathways, PI3K/AKT and p38, work together to assemble components of the protein complexes responsible for muscle-specific transcription, and how each pathway is responsible for a distinct step in the transcription process.

Additionally, the team was able to pharmacologically separate these two steps, showing that selective interference with either cascade leads to incomplete assembly of protein complexes, thus preventing muscle-specific gene expression. The results point to possible pharmacological avenues for selective control of gene expression in adult muscle stem cells that may have therapeutic potential in regenerative medicine.

Source: Burnham Institute

Explore further: NASA study finds microgravity reduces regenerative potential of embryonic stem cells

Related Stories

Shaping contraction

November 20, 2015

You were once a hollow shell. To sculpt that hollow ball into an organism with layers of internal organs, muscle and skin, portions of that embryonic 'shell' folded inwards. The same happens to fruit fly embryos, and researchers ...

A Prkci gene keeps stem cells in check

October 31, 2015

When it comes to stem cells, too much of a good thing isn't wonderful: producing too many new stem cells may lead to cancer; producing too few inhibits the repair and maintenance of the body.

Recommended for you

Roboticists learn to teach robots from babies

December 1, 2015

Babies learn about the world by exploring how their bodies move in space, grabbing toys, pushing things off tables and by watching and imitating what adults are doing.

Getting into the flow on the International Space Station

December 1, 2015

Think about underground water and gas as they filter through porous materials like soil and rock beds. On Earth, gravity forces water and gas to separate as they flow through the ground, cleaning the water and storing it ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.