Mechanism for regulation of growth and differentiation of adult muscle stem cells is revealed

December 7, 2007

During muscle regeneration, which is a natural response to injury and disease, environmental cues cause adult muscle stem cells (satellite cells) to shift from dormancy to actively building new muscle tissue.

Although the signaling pathways controlling muscle regeneration are fairly well known, how these signals lead to altered chromatin structure remains undiscovered. A group of scientists at the Burnham Institute for Medical Research in La Jolla, CA, analyzed the mechanism by which certain cellular signaling cues cause epigenetic modifications when released within the regenerative microenvironment, thus controlling the expression of genes that regulate growth and differentiation of muscle stem cells that repair injured muscle.

In a recent publication in Molecular Cell, the scientific group, led by Pier Lorenzo Puri, MD, Ph.D., shows how two signaling pathways, PI3K/AKT and p38, work together to assemble components of the protein complexes responsible for muscle-specific transcription, and how each pathway is responsible for a distinct step in the transcription process.

Additionally, the team was able to pharmacologically separate these two steps, showing that selective interference with either cascade leads to incomplete assembly of protein complexes, thus preventing muscle-specific gene expression. The results point to possible pharmacological avenues for selective control of gene expression in adult muscle stem cells that may have therapeutic potential in regenerative medicine.

Source: Burnham Institute

Explore further: New porous hydrogel could boost the success of stem-cell-based tissue regeneration

Related Stories

Reprogramming the oocyte

August 26, 2015

(—Among other things, the egg is optimized to process the sperm genome. The cytoplasmic factors that make this possible also give the egg the ability to reprogram the nuclei from other kinds of cells if these nuclei ...

Researchers control embryonic stem cells with light

August 26, 2015

UC San Francisco researchers have for the first time developed a method to precisely control embryonic stem cell differentiation with beams of light, enabling them to be transformed into neurons in response to a precise external ...

How a single molecule turns one immune cell into another

July 30, 2015

All it takes is one molecule to reprogram an antibody-producing B cell into a scavenging macrophage. This transformation is possible, new evidence shows, because the molecule (C/EBPa, a transcription factor) "short-circuits" ...

Recommended for you

Chimpanzees shed light on origins of human walking

October 6, 2015

A research team led by Stony Brook University investigating human and chimpanzee locomotion have uncovered unexpected similarities in the way the two species use their upper body during two-legged walking. The results, reported ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.