In search for water on Mars, clues from Antarctica

December 10, 2007
In search for water on Mars, clues from Antarctica
Site in Pearse Valley of the McMurdo Dry Valleys in Antarctica. Saltwater seeped to the surface and evaporated, leaving behind a salty crust. Photo courtesy of Ohio State University.

Scientists have gathered more evidence that suggests flowing water on Mars -- by comparing images of the red planet to an otherworldly landscape on Earth.

In recent years, scientists have examined images of several sites on Mars where water appears to have flowed to the surface and left behind a trail of sediment. Those sites closely resemble places where water flows today in the McMurdo Dry Valleys in Antarctica , the new study has found.

The new study bolsters the notion that liquid water could be flowing beneath the surface of Mars. And since bacteria thrive in the liquid water flowing in the Dry Valleys, the find suggests that bacterial life could possibly exist on Mars as well.

Researchers have used the Dry Valleys as an analogy for Mars for 30 years, explained Berry Lyons, professor of earth sciences and director of the Byrd Polar Research Center at Ohio State University.

Lyons is lead principal investigator for the National Science Foundation's Long Term Ecological Research (LTER) Network, a collaboration of more than 1,800 scientists who study the ecology of sites around the world.

One of the LTER sites is in the Dry Valleys, a polar desert in Antarctica with year-round saltwater flowing beneath the surface. With temperatures that dip as low as negative 85 degrees Fahrenheit, it's as cold as the Martian equator, and its iron-rich soil gives it a similar red color.

“If you looked at pictures of both landscapes side by side, you couldn't tell them apart,” Lyons said.

In the new study, LTER scientists did just that -- they compared images of water flows in the Dry Valleys to images of gullies on Mars that show possible evidence of recent water flow.

Team member Peter Doran of the University of Illinois at Chicago presented the results Tuesday, December 11, 2007, at the American Geophysical Union meeting at San Francisco .

The scientists' conclusion: the Martian sites closely resemble sites in the Dry Valleys where water has seeped to the surface.

The water in the Dry Valleys can be very salty -- it's full of potassium chloride, the same kind of salt we sprinkle on roadways to melt ice. That's why the water doesn't freeze. Natural springs form from melted ground ice or buried glacier ice, and the saltwater percolates to the surface.

“Even in the dead of winter, there are locations with salty water in the Dry Valleys ,” Lyons said. “Two months a year, we even have lakes of liquid water covered in ice.”

But after the water reaches the surface, it evaporates, leaving behind salt and sediment.

The same thing would happen on Mars, he added.

Because the suspected sediment sites on Mars closely resemble known sediment sites in the Dry Valleys, Lyons and his colleagues think that liquid saltwater is likely flowing beneath the Martian surface.

Lyons, who has led many expeditions to Antarctica, said that his team will continue to compare what they learn on Earth to any new evidence of water uncovered on Mars.

As they walk across the Dry Valleys, they can't help but compare the two.

“There's just something about that landscape, about being so far from civilization, that makes you think about other worlds,” he said.

Source: Ohio State University, by Pam Frost Gorder

Explore further: Demise of Klamath River deal could rekindle old water-use battles

Related Stories

Nearing the limits of life on Earth

January 19, 2016

It took Jackie Goordial over 1000 Petri dishes before she was ready to accept what she was seeing. Or not seeing. Goordial, a post-doctoral fellow in the Department of Natural Resource Sciences at McGill University has spent ...

Los Angeles River banks to be raised for El Nino

January 8, 2016

The U.S. Army Corps of Engineers will begin work next week to temporarily raise the banks along nearly three miles of the Los Angeles River to improve flood protection during El Nino storms, officials announced Friday, just ...

California braces for series of El Nino storms

January 4, 2016

After all the talk, El Nino storms have finally lined up over the Pacific and started soaking drought-parched California with rain expected to last for most of the next two weeks, forecasters said Monday.

Image: Dark pools on Titan

January 11, 2016

This radar image from the Cassini orbiter shows a thin strip of surface on Saturn's moon Titan. The yellow-hued terrain appears to be peppered with blue-tinted lakes and seas. However, these would not be much fun to splash ...

Recommended for you

Proto-planet has two masters

February 13, 2016

A Rice University researcher will discuss images that may show the formation of a planet—or a planetary system—around a distant binary star at the annual meeting of the American Association for the Advancement of Science ...

Gravitational waves found, black-hole models led the way

February 11, 2016

Gravitational waves were predicted by Einstein's theory of general relativity in 1916, and now, almost exactly 100 years later, the faint ripples across space-time have been found. The advanced Laser Interferometric Gravitational-wave ...

The 'glitching' of the Vela pulsar

February 9, 2016

(Phys.org)—A team of Australian astronomers has conducted an intensive observation of a curious young pulsar to investigate changes in its rotation frequency known as 'glitching'. Located about 910 light years from the ...

Earth-like planets have Earth-like interiors

February 8, 2016

Every school kid learns the basic structure of the Earth: a thin outer crust, a thick mantle, and a Mars-sized core. But is this structure universal? Will rocky exoplanets orbiting other stars have the same three layers? ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.