'Jekyll and Hyde' bacteria offer pest control clue

December 19, 2007

New research at York has revealed so-called ‘Jekyll and Hyde’ bacteria, suggesting a novel way to control insect pests without using insecticides.

Researchers at the University of York studied the relationship between plant-dwelling insects and the bacteria that live in them – and discovered an unexpected interaction.

Plants are not ‘easy meat’ for insects. In fact, many insects thrive on plant food only because of the presence of a third party: symbiotic bacteria that live in the insects and provide extra nutrients.

While studying interactions between black bean aphids and their associated bacteria, York researchers discovered an intriguing new category of organism that they dubbed ‘Jekyll and Hyde’ bacteria.

Black bean aphids can live on a number of different plant species. In most situations, their internal bacteria are harmless or even beneficial – this is their ‘Jekyll’ side.

But on certain plants, the relationship between insect and bacteria changes with the microscopic organisms exhibiting a disruptive ‘Hyde’ side. The insects grow and reproduce very slowly, while the bacteria themselves proliferate to very high densities in a short time – almost as if the bacteria were ‘betraying’ their hosts.

Further experiments have suggested that the factor triggering this strange change is the composition of nutrients in the plants where the creatures live.

The results, published in the Proceedings of the Royal Society B, may point the way to new methods to control aphids and other insect pests.

Professor Angela Douglas, of the University’s Department of Biology, said:

“We now have the basis to explore precisely how these insect pests control their bacteria – and perhaps to develop ways to make the bacteria ‘turn nasty’ on the insects. These findings offer exciting new opportunities to control aphids and other pests without using insecticides.”

Source: University of York

Explore further: Oskar's structure revealed

Related Stories

Oskar's structure revealed

July 16, 2015

The structure of two parts of the Oskar protein, known to be essential for the development of reproductive cells, has been solved by scientists from EMBL Heidelberg.

Researchers discover how petunias know when to smell good

June 29, 2015

Good timing is a matter of skill. You would certainly dress up for an afternoon business meeting, but not an evening session of binge-watching Netflix. If you were just a few hours off in your wardrobe timing, your spouse ...

How bats fly to find their prey

June 18, 2015

New research, complete with night-vision video recordings, helps elucidate how bats actually fly to find their prey.

Microbe-mediated adaptation to a novel diet

June 10, 2015

Insects are the most diverse animal group on earth. Many of them feed on plants, and they are constantly challenged by the diverse direct and indirect defenses of their food plants as well as an imbalanced nutrient composition. ...

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.