Genetic differences influence aging rates in the wild

December 12, 2007

Long-lived, wild animals harbor genetic differences that influence how quickly they begin to show their age, according to the results of a long-term study reported online on December 13th in Current Biology, a Cell Press publication. Evidence for the existence of such genetic variation for aging rates—a central tenet in the evolutionary theory that explains why animals would show physiological declines as they grow older—had largely been lacking in natural populations until now, the researchers said.

“We’ve found that individuals differ in their rates of aging, or senescence, and that these differences are (at least in part) caused by genetic effects so they will be inherited,” said Alastair Wilson of the University of Edinburgh. “While the genetic effects we found are completely consistent with existing theory, scientists hadn’t previously managed to test this theory properly except in controlled laboratory experiments.

“We’ve also done this work on long-lived mammals,” he added. “For someone interested in the evolution of aging and senescence in humans, these are going to be more relevant organisms than Drosophila [fruit flies].”

Scientists normally expect genetic mutations having bad effects to be removed by natural selection, Wilson explained. Conversely, selection will lead to an increase in the frequency of mutations that are beneficial. “On this basis, any genes with bad effects on survival or reproduction should be removed by selection,” he said. “But if that were true then there is no reason for individuals to deteriorate as they get old.”

Aging therefore raises a critical question: How has natural selection failed to remove genetic effects responsible for such reduced fitness among older individuals" Current evolutionary theory explains this phenomenon by showing that, as a result of the risk of death from environmental causes that individuals experience over the course of their lives, the force of selection inevitably weakens with age, he continued. This, in turn, means that genetic mutations having detrimental effects that are only felt late in life may persist in a population. Although widely accepted, this theory rests on the assumption that there is genetic variation for aging in natural systems.

To look for such genetic variation in the new study, the researchers examined wild Soay sheep and red deer living on two Scottish islands. Those populations were ideal for the study because they provide unparalleled levels of data, including individual survival and reproductive success, for large numbers of long-lived animals, Wilson said. In both study systems, individually marked animals are followed throughout their lives from birth until death, and their relationships to one another are known.

In both the red deer and sheep populations, they found evidence for age-specific genetic effects on “fitness”—a measure combining the animals’ probability of survival and reproduction. “The present study provides, to our knowledge, the first evidence for additive genetic variance in aging rates from a wild, non-model study organism,” the researchers concluded. “Furthermore, the age-specific patterns of additive genetic (co)variation evident in the two populations examined here were entirely consistent with the hypothesis that declines in fitness with age are driven by a weakening of natural selection.”

Source: Cell Press

Explore further: Infertile worms resist infection-induced neurodegeneration

Related Stories

How fast you move can predict how healthy you'll be

November 20, 2015

Instead of focusing on drawing out the length of life, South Korea's IBS Center for Plant Aging Research and the research group led by Coleen Murphy, a professor at Princeton University have created a tool that can be used ...

Ten ways advanced computing catalyzes science

November 19, 2015

When researchers need to compare complex new genomes, or map new regions of the Arctic in high-resolution detail, or detect signs of dark matter, or make sense of massive amounts of functional MRI data, they turn to the high-performance ...

Researchers discover size gene for salmon

November 4, 2015

The size of returning Atlantic salmon is largely dependent on the number of years that the salmon remains at sea before returning to spawn in the river. The genetic basis of this trait has not been previously known, making ...

Recommended for you

Amazon deforestation leaps 16 percent in 2015

November 28, 2015

Illegal logging and clearing of Brazil's Amazon rainforest increased 16 percent in the last year, the government said, in a setback to the aim of stopping destruction of the world's greatest forest by 2030.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.