New gene prediction method capitalizes on multiple genomes

Dec 20, 2007

Researchers at Stanford University report in the online open access journal, Genome Biology, a new approach to computationally predicting the locations and structures of protein-coding genes in a genome. Gene finding remains an important problem in biology as scientists are still far from fully mapping the set of human genes.

Furthermore, gene maps for other vertebrates, including important model organisms such as mouse, are much more incomplete than the human annotation. The new technique, known as CONTRAST (CONditionally TRAined Search for Transcripts), works by comparing a genome of interest to the genomes of several related species.

CONTRAST exploits the fact that the functional role protein-coding genes play a specific part within a cell and are therefore subjected to characteristic evolutionary pressures. For example, mutations that alter an important part of a protein's structure are likely to be deleterious and thus selected against. On the other hand, mutations that preserve a protein's amino acid sequence are normally well tolerated. Thus, protein-coding genes can be identified by searching a genome for regions that show evidence such patterns of selection. However, learning to recognize such patterns when more than two species are compared has proved difficult.

Previous systems for gene prediction were able to effectively make use of one additional 'informant' genome. For example, when searching for human genes, taking into account information from the mouse genome led to a substantial increase in accuracy. But, no system was able to leverage additional informant genomes to improve upon state-of-the-art performance using mouse alone, although it was expected that adding informants would make patterns of selection clearer.

CONTRAST solves this problem by learning to recognize the signature of protein-coding gene selection in a fundamentally different way from previous approaches. Instead of constructing a model of sequence evolution, CONTRAST directly 'learns' which features of a genomic alignment are most useful for recognizing genes. This approach leads to overall higher levels of accuracy and is able to extract useful information from several informant sequences.

In a test on the human genome, CONTRAST exactly predicted the full structure of 59% of the genes in the test set, compared with the previous best result of 36%. Its exact exon sensitivity of 93%, compared with a previous best of 84%, translates into many thousands of exons correctly predicted by CONTRAST but missed by previous methods. Importantly, CONTRAST's accuracy using a combination of eleven informant genomes was significantly higher than its accuracy using any single informant. The substantial advance in predictive accuracy represented by CONTRAST will further efforts to complete protein-coding gene maps for human and other organisms.

Further information about existing gene-prediction methods and the advance CONTRAST brings to the field can be found in a minireview by Paul Flicek, which accompanies the article by Batzoglou and colleagues.

Source: BioMed Central

Explore further: Researchers discover surprisingly wide variation across species in genetic systems that influence aging

Related Stories

Highly efficient CRISPR knock-in in mouse

May 01, 2015

Genome editing using CRISPR/Cas system has enabled direct modification of the mouse genome in fertilized mouse eggs, leading to rapid, convenient, and efficient one-step production of knockout mice without ...

The evolutionary secrets of the brachiopod shell

Apr 30, 2015

Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have carried out the first detailed study of the molecular mechanisms responsible for formation of the brachiopod shell. Comparison with shell synthesis in other ...

Recommended for you

Ecuador seizes 200,000 shark fins

14 minutes ago

Ecuador seized around 200,000 shark fins and arrested three suspected traffickers at the country's main fishing port, the government said Wednesday.

English foxes safe for now as Cameron backs down

9 hours ago

English foxes won a temporary respite after Prime Minister David Cameron's promise to repeal a ban on hunting them failed to make it into his programme outlined in the Queen's Speech on Wednesday.

Sex chromosomes—why the Y genes matter

10 hours ago

Several genes have been lost from the Y chromosome in humans and other mammals, according to research published in the open access journal Genome Biology. The study shows that essential Y genes are rescue ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.