For the fruit fly, everything changes after sex

December 10, 2007

The females of many insect species change their behavior right after mating: mosquitoes look for a meal of fresh blood and flies begin to lay eggs. Researchers at the IMP managed to identify the molecular switches that are responsible for these behavioral changes. This could open up new possibilities to control agricultural pests or disease carriers. The science journal Nature reports on the discovery in its current online release.

IMP Director Barry Dickson and his group are interested in the genetic basis of innate behaviour. They focus on the reproductive behaviour of the fruit fly Drosophila melanogaster. Two years ago, the team was able to identify the fruitless gene as a key regulator of mating behaviour.

For 20 years, scientists have been trying to identify another molecular switch which changes the behaviour of female insects after mating. It makes them lose interest in further sexual contact and start laying eggs. Mosquitoes, once fertilized, look out for a meal of blood and may transmit the malaria parasite along the way.

The trigger for the behavioral switch is a factor present in the seminal fluid of male insects. This sex peptide (SP), as it is called in Drosophila, has been known to scientists for quite a while. Nilay Yapici, a PhD student in Barry Dickson’s team, has now identified the receptor (SPR) responsible for the effect of SP and thus revealed the underlying molecular mechanism. She also showed that the gene for SPR is active in the reproductive organs as well as the brain of the flies.

To get this far, it took two years of painstaking work and a scientific tool which was developed over the past few years by the Dickson group. This “Drosophila RNAi Library” is a collection of 22,000 fly strains and has recently been made available to researchers worldwide. Due to this collection, it is now possible to switch off any chosen gene in the fly. By doing so, neurobiologists are able to identify genes that influence behaviour.

Nilay Yapici studied 22,000 female flies and observed how they behaved after mating. In 130 cases, she found flies which continued to mate and laid very few or no eggs. Further evaluation of these genes and subsequent experiments with cell cultures led to the identification of the long-sought receptor, SPR. By activating or disrupting SPR in specific neurons, the receptor could be localized in the central nervous system of the fly.

Apart from the benefit to basic research, the discovery might offer new approaches for controlling the reproductive or host-seeking behaviours of various agricultural pests and human disease carriers. The molecular mechanism has remained remarkably stable in the course of evolution and SPR-like receptors can be found in many insect species. Ms. Yapici thinks that “It might be possible to develop a substance that blocks the receptor SPR. This inhibitor would work as a kind of ‘birth control pill’: female insects would continue to mate but would not lay eggs.”

Source: Research Institute of Molecular Pathology

Explore further: Researchers design and patent graphene biosensors

Related Stories

Researchers design and patent graphene biosensors

November 13, 2015

The Moscow Institute of Physics and Technology (MIPT) is patenting biosensor chips based on graphene, graphene oxide and carbon nanotubes that will improve the analysis of biochemical reactions and accelerate the development ...

Sensing small molecules may revolutionize drug design

October 23, 2015

Most pharmaceutical drugs consist of tiny molecules, which target a class of proteins found on the surfaces of cell membranes. Studying these subtle interactions is essential for the design of effective drugs, but the task ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.