Evolution with a restricted number of genes

Dec 14, 2007

The development of higher forms of life would appear to have been influenced by RNA polymerase II. This enzyme transcribes the information coded by genes from DNA into messenger-RNA (mRNA), which in turn is the basis for the production of proteins. RNA polymerase II is highly conserved through evolution, with many of its structural characteristics being conserved between bacteria and humans.

Single-cell organisms were already in existence 500 million years ago, with several thousand genes providing different cellular functions. Further developments seemed dependent on producing even more genes. For a highly developed organism like a human, this form of evolution would have resulted in several million genes.

Researchers were therefore surprised to learn, following publication of the human genome, that a human only has around 25,000 genes – not many more than a fruit fly or a worm with approximately 15,000 to 20,000 genes. It would appear that, over the last 500 million years, other ways to produce highly complex organisms have evolved. Evolution has simply found more efficient ways to use the genes already there. But what could have made this possible?

In the current issue of Science the group of Prof. Dirk Eick at the Institute of Clinical Molecular Biology and Tumor Genetics, GSF – National Research Center for Environment and Health, Munich, and the group of Dr. Shona Murphy from Oxford University, England, publish results which represent a piece of the puzzle and shed new light on to the purpose of an unusual structure in RNA polymerase II. They build on earlier observations that gene expression is not just regulated by binding of the enzyme to the gene locus to which it is recruited, but also during the phase of active transcription from DNA into RNA.

During this phase, parts of the newly synthesised RNA may be removed and the remaining sequences combined into new RNA message. This ‘splicing’ of RNA occurs during gene transcription, and in extreme cases, can produce RNAs coding for several thousand different proteins from a single gene.

But what was the development that permitted this advance in gene usage? The RNA polymerase II has developed a structure composed of repeats of a 7 amino-acid sequence. In humans this structure – termed “carboxyterminal domain” or CTD – is composed of 52 such repeats. It is placed exactly at the position where RNA emerges from RNA polymerase II. In less complex organisms the CTD is much shorter: a worm has 36 repeats, and yeast as few as 26, but many single-cell organisms and bacteria have never developed an obvious CTD structure.

Although the requirement of CTD for the expression of cellular genes in higher organisms is undisputed, the molecular details for the gene-specific maturation of RNAs is still largely enigmatic. The groups of Dirk Eick and Shona Murphy have now shown a differential requirement for phosphorylation of the amino acid serine at position 7 of CTD in the processing and maturation of specific gene products.

These results provide the groundwork for the discovery of further pieces of the CTD puzzle and thus enlarge our knowledge of gene regulation. Given its fundamental importance, understanding the mechanism of gene regulation is essential if we are to understand cancer and other diseases at the molecular level and develop new therapies.

Source: GSF - National Research Center for Environment and Health

Explore further: Researchers combat bias in next-generation DNA sequencing

Related Stories

Herpes virus hijackers

May 22, 2015

The virus responsible for the common cold sore hijacks the machinery within our cells, causing them to break down and help shield the virus from our immune system, researchers from the University of Cambridge ...

How an RNA gene silences a whole chromosome

Apr 27, 2015

Researchers at Caltech have discovered how an abundant class of RNA genes, called long non-coding RNAs (lncRNAs, pronounced link RNAs) can regulate key genes. By studying an important lncRNA, called Xist, ...

Recommended for you

What is the best way to kill a cane toad?

46 minutes ago

Like many pests, cane toads are killed in their thousands in Australia every year, especially by community-based 'toad-busting' groups. New research has now revealed the most humane way to do it.

Petrels tracked across the Oceans

53 minutes ago

Staff at British Antarctic Survey (BAS) are following the journeys of White-chinned Petrel fledglings as they make their first journeys over the South Atlantic Ocean in search of food. The birds have been ...

Research helps support Indian Ocean sanctuary

1 hour ago

Research by scientists at the University of St Andrews, published today in PLOS One, proves that the Vamizi Island marine sanctuary, in the north of Mozambique, has had a positive effect on fish populations not only within ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.