Decoy makes sitting duck of superbugs

December 4, 2007

Scientists from the John Innes Centre have proven that by taking a short stretch of DNA from a bacterium and delivering it with an existing antibiotic they can switch off antibiotic resistance.

Together with technology transfer company PBL, the scientists have launched a spin-out company, Procarta Biosystems Ltd, to develop the technology.

“The DNA sequence acts as a decoy, disrupting gene expression and blocking resistance”, said Dr Michael McArthur from JIC.

“We are putting genetic information directly into drugs. This is the first application of a DNA based therapy”.

The scientists have also patented a way of discovering decoys in bacteria without necessarily having to know the genes involved. This means they can develop effective new drugs against any bacterium within a couple of years and at a fraction of the normal cost.

The technology can give fresh patent life to existing antibiotics - when combined with a decoy they can be patented as a new drug.

This comes at a time when the number of new antibiotics receiving approval has dramatically declined. Faced with antibiotic resistance the pharmaceutical industry is unlikely to be able to deliver new products.

“Natural resistance will always be hot on the heels of a new antibiotic because they co-evolve”, said Dr McArthur. “Ours’ is not a traditional pharmaceutical approach and provides a completely new challenge to bacteria”.

The technology can also be used to improve the production of antibiotics by bacteria and to produce enzymes and other compounds using bacteria for use in industrial processes.

Many industrial processes are harsh and unsustainable, using petrochemicals, high temperatures and creating toxic by-products. In industrial biotechnology, also called “white biotechnology”, bacteria make medically and commercially important compounds biologically.

“By using bacteria, many industrial processes could be cleaned up”, said Dr McArthur.

The Procarta scientists found that the bacterium Streptomyces produces a particularly high yield of enzymes and proteins. Unusually, it can also secrete the proteins it produces so they do not have to be extracted.

“Streptomyces is the enzyme producing bacterium with bells and whistles, set to make a major contribution to a market already predicted to be worth £400 million by 2010”, said Dr McArthur.

We use the products of white biotechnology in our everyday lives. They contribute to ingredients in the food we eat, energy we use that has been generated with renewable biomass rather than fossil fuels, medicines we take, and everyday products such as detergents, paint and paper.

Source: Norwich BioScience Institutes

Explore further: Researchers flip riboswitch to kill bacteria

Related Stories

Researchers flip riboswitch to kill bacteria

October 1, 2015

(—A team of researchers working for pharmaceutical company Merck has found an instance of a molecule that is able to flip a switch in a bacterium that prevents it from synthesizing a needed nutrient, and thus kills ...

Molecular bodyguards for immature membrane proteins

September 7, 2015

During their formation within the cells, many proteins rely on the assistance of molecular protectors, so-called chaperones. They help the proteins to fold correctly and thus ensure the right final structure. The roles of ...

FIC proteins send bacteria into hibernation

August 20, 2015

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue ...

Recommended for you

Ancient genome from Africa sequenced for the first time

October 8, 2015

The first ancient human genome from Africa to be sequenced has revealed that a wave of migration back into Africa from Western Eurasia around 3,000 years ago was up to twice as significant as previously thought, and affected ...

Blue skies, frozen water detected on Pluto

October 8, 2015

Pluto has blue skies and patches of frozen water, according to the latest data out Thursday from NASA's unmanned New Horizons probe, which made a historic flyby of the dwarf planet in July.

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.