Collaboration yields 'the right glasses' for observing mystery behavior in electrons

Dec 13, 2007
Collaboration yields 'the right glasses' for observing mystery behavior in electrons
A stylized rendition of an infrared nanoscope illustrate how concentrated infrared illumination finely focuses upon a field just 20-billionths of a meter wide to view metallic puddles in vanadium dioxide as the material begins to transform from an electrically insulating state to an electrically conducting one. Credit: Los Alamos National Laboratory

In collaboration with the Center for Integrated Nanotechnologies at Los Alamos, an international team of researchers has, for the first time, viewed on a nanoscale the formation of mysterious metallic puddles that facilitate the transition of an electrically insulating material into an electrically conducting one.

The research may lead to a better understanding of superconductors—materials that conduct electricity without energy loss—or development of better materials for powering high-speed electronics.

In a paper published today in Science, Los Alamos researcher Alexander Balatsky joins researchers in describing a novel approach to viewing Mott transition in vanadium dioxide. Balatsky’s co-authors include: Mumtaz Qazilbash, Greg Andreev, Brian Maple and Dimitri Basov of the University of California-San Diego; Markus Brehm and Fritz Keilmann of the Max Planck Institute for Biochemistry and Center for NanoScience in Munich, Germany; and Byung-Gyu Chae, Hyun-Tak Kim and Sun Jin Yun of IT Convergence and Components Lab, Electronics and Telecommunication Research Institute in Korea.

Materials such as copper metal contain electrons that are mobile enough to conduct an electrical current. In conducting materials such as copper or aluminum, electrons do not hinder one another and are free to move about the lattice structure of the material. In more-complex crystal oxides, such as vanadium dioxide, electrons can become influenced by nearby positively or negatively charged particles, and their movement can become hindered. These materials are known by physicists as “correlated materials.”

Correlated materials include superconductors or semiconductors—crystals peppered or “doped” with atoms that may donate mobile electrons to the solid. Correlated materials can exhibit extraordinary changes in their physical properties, such as transforming from an insulating material to a conducting material, when subjected to relatively small changes in pressure or temperature.

Vanadium dioxide begins to transform itself from an insulator to a conductor when heated above 341 degrees Kelvin (about 154 degrees Fahrenheit or 68 degrees Celsius).

For decades scientists have puzzled over how this transformation to a fully metallic state—known as “Mott” metal-insulator transition—occurs. Balatsky, a Los Alamos condensed-matter theorist, believed, like many other scientists, that the transition begins when metallic puddles begin forming at sites of impurities or imperfections within the lattice. The puddles grow until they touch, and at that point the material becomes conductive, or superconductive.

“We had evidence to believe that metallic puddles were forming in an inhomogenous manner within the material at the transition phase, but we had no way of proving it,” said Balatsky. “If you had the right glasses that could see something extremely small, you could see this process occurring.”

The ‘right glasses’ came in the form of a microscopic viewing technique known as near-field scanning optical microscopy, which has been used to inspect viruses and nano-transistors. The microscope sees infrared light reflecting off of a surface only 20-billionths of a meter (or 20 nanometers) wide. A single virus is less than 20 nanometers wide, while a typical human hair is about 100,000 nanometers wide.

Using this nanoscale viewer, the UCSD-LANL-Max Planck-ETRI team was able to watch metallic puddles form within vanadium oxide at the exact temperature where the Mott transition was expected to occur. These “infrared nanoscope” images have revealed for the first time a new type of metal “phase” existing only during the transition of the material from its insulating state to its conducting state.

The new findings will help researchers worldwide better describe and understand underlying physical laws of how charges propagate through correlated materials.

The research could help materials scientist understand how to precisely dope a material with specific atoms in order to optimize conducting or superconducting behavior or, conversely, to create materials impervious to electrical conductivity or magnetic influences.

“What is extremely exciting about this research is that four different laboratories with complementary disciplines cooperated to use this infrared nanoscope in its first successful application for solving a solid-state physics puzzle,” Keilmann said.

Source: Los Alamos National Laboratory

Explore further: New nanogenerator harvests power from rolling tires

Related Stories

The discovery of the molecule Si-C-Si in space

15 hours ago

The space between stars is not empty—it contains a vast reservoir of diffuse material with about 5-10% of the total mass of our Milky Way galaxy. Most of the material is gas, but about 1% of this mass (quite ...

Physicists shatter stubborn mystery of how glass forms

10 hours ago

A physicist at the University of Waterloo is among a team of scientists who have described how glasses form at the molecular level and provided a possible solution to a problem that has stumped scientists ...

What is the biggest planet in the solar system?

Jun 25, 2015

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant of Jupiter. Between it's constant, swirling clouds, its many, many moons, and its Giant ...

Recommended for you

Nanowires could be the LEDs of the future

Jun 24, 2015

The latest research from the Niels Bohr Institute shows that LEDs made from nanowires will use less energy and provide better light. The researchers studied nanowires using X-ray microscopy and with this ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.