Cognitive 'fog' of normal aging linked to brain system disruption

December 5, 2007

Comparisons of the brains of young and old people have revealed that normal aging may cause cognitive decline due to deterioration of the connections among large-scale brain systems. The researchers linked the deterioration to a decrease in the integrity of the brain’s “white matter,” the tissue containing nerve cells that carry information. The researchers found that the disruption occurred even in the absence of pathology associated with Alzheimer’s disease (AD).

Randy Buckner and his colleagues reported their findings in the December 6, 2007, issue of the journal Neuron, published by Cell Press.

The researchers assessed brain function in a sample of adults ranging in age from 18 to 93 and comprising 38 young adults and 55 older adults. They did so using functional magnetic resonance imaging (fMRI), which uses harmless radio waves and magnetic fields to measure blood flow in brain regions, which in turn reflects activity.

To assess the integrity of functional connections between brain areas, the researchers used fMRI to measure spontaneous low-frequency fluctuations known to reflect the activity of such connections. The researchers concentrated on large-scale connections between frontal and posterior brain regions that are associated with high-level cognitive functions such as learning and remembering.

The researchers reported a “dramatic reduction” in functional connections when they compared the younger and older groups.

The researchers also used an MRI technique called “diffusion tensor imaging” to measure the integrity of white matter in the brains of the subjects. This technique reveals details of the structure of brain tissue. Their analysis revealed that the reduced functional connection they detected in brain areas of the older subjects was correlated with decreased white matter integrity.

When the researchers tested the subjects’ cognitive function, they found that “Those individuals exhibiting the lowest functional correlation also exhibited the poorest cognitive test scores.”

The researchers concluded that “our observations suggest that within the context of globally intact brain systems, subtle changes accumulate over time in advanced aging that disrupt the coordination of large-scale brain systems.”

They also said that, although AD is known to produce similar deterioration due to pathological deposits of amyloid protein, “Our present results, in particular the analysis of individuals without amyloid deposition, show that normal aging is associated with a form of system disruption that is distinct from that associated with AD.”

Source: Cell Press

Explore further: First demonstration of cumulative cultural evolution in the laboratory

Related Stories

Learning language by playing games

September 24, 2015

MIT researchers have designed a computer system that learns how to play a text-based computer game with no prior assumptions about how language works. Although the system can't complete the game as a whole, its ability to ...

Improving memory with a flash of light

September 14, 2015

The burgeoning field of optogenetics has seen another breakthrough with the creation of a new plant-human hybrid protein molecule called OptoSTIM1. In South Korea, a research team led by Won Do Heo, associate professor at ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.