Coated Ultrasmall Quantum Dots Suitable for In Vivo Imaging

December 3, 2007

Quantum dots have shown promise in a variety of imaging and therapeutic applications, particularly when they are coated to render them biocompatible. However, such coating can increase the size of quantum dots signficantly, which can adversely effect their pharmacokinetic and biodistribution properties.

Now, researchers at the Massachussetts Institute of Technology and Beth Israel Deaconess Medical Center have developed a new procedure that produces ultracompact quantum dots. Tests with these new materials show that this coating not only does not impair the superior optical properties of the quantum dots but also improves how the quantum dots behave in living animals.

Moungi Bawendi, Ph.D., a member of the MIT-Harvard Center of Cancer Nanotechnology Excellence, and John Frangioni, M.D., Ph.D., led this study. Their results appear in the Journal of the American Chemical Society.

To create these compact quantum dots, the investigators first create dual-layer nanocrystals that have a zinc-cadmium-sulfide (ZnCdS) core surrounded by a cadmium selenide (CdSe) shell. This combination of materials creates a compact yet bright quantum dot. Next, the researchers add a coating of cysteine, a sulfur-containing amino acid that binds tightly to the CdSe shell.

When stored in the presence of a reducing agent, these quantum dots are stable for 1 week at room temperature and at least 3 months at 4°C. Dynamic light scattering, a technique used to study nanoparticle size, showed that the diameter of these quantum dots was 5.9 nanometers. More importantly, their size did not increase when incubated with serum, demonstrating that the cysteine coating prevented proteins from collecting on the quantum dot surface.

The researchers note that the exceptionally small size of their quantum dots and their stability in serum led to new in vivo behavior. When injected into rats, the majority of the quantum dots accumulated in the bladder within 4 hours, demonstrating that these nanoparticles are small enough to be filtered out of the kidneys. In practical terms, this finding suggests that these compact quantum dots, if attached to a small targeting molecule, could be used to image tumors without having to worry about accumulation within the body. Any injected dose that did not bind to its target would clear rapidly, decreasing background noise and improving the sensitivity of tumor imaging.

This work, which was supported in part by the National Cancer Institute’s Alliance for Nanotechnology in Cancer, is detailed in the paper "Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications." This paper was published online in advance of print publication. An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Quantum dot solar windows go non-toxic, colorless, with record efficiency

Related Stories

'Quantum dot' technology may help light the future

August 19, 2015

Advances at Oregon State University in manufacturing technology for "quantum dots" may soon lead to a new generation of LED lighting that produces a more user-friendly white light, while using less toxic materials and low-cost ...

Controlling interactions between distant qubits

July 23, 2015

A big part of the burgeoning science of quantum computation is reliably storing and processing information in the form of quantum bits, or qubits. One of the obstacles to this goal is the difficulty of preserving the fragile ...

Where is solar power headed?

July 22, 2015

Most experts agree that to have a shot at curbing the worst impacts of climate change, we need to extricate our society from fossil fuels and ramp up our use of renewable energy.

Recommended for you

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.