Cleaner diesels thanks to laser light

Dec 07, 2007

Dutch researcher Bas Bougie has developed a laser system to investigate soot development in diesel engines. Small soot particles are not retained by a soot filter but are, however, more harmful than larger soot particles. Therefore, soot development needs to be tackled at the source. Laser Induced Incandescence is a technique that reveals exactly where soot is generated and can be used by project partners to develop cleaner diesel engines.

Measuring soot formation in a diesel engine is far from easy. Due to the turbulent environment in the combustion cylinder, no two combustion cycles are the same. Furthermore, the measurements are difficult to reproduce as the pressure at which fuel is injected into the cylinder causes an extra source of turbulence. Bougie made his measurements in a glass cylinder with an engine adapted for this purpose.

Laser Induced Incandescence (LII) can be used to investigate optimal engine conditions that reduce soot emission from the engine. LII can be deployed in different types of engines and with different fuels.

Bougie carried out measurements during higher and lower loading of the engine and for two different fuel injection systems: a line pump system and a common rail system. Neither the engine load nor the injection system was found to affect the primary particle size of the soot emitted. However, there are many other motor settings that can lead to an improvement in the combustion.

The results of the measurements can now be used to verify existing combustion models at Eindhoven University of Technology. Together with the STW users' committee (participants are: DAF, Eindhoven University of Technology, Delft University of Technology, the University of Twente, Cyclone Fluid dynamics, EP Controls BV, Paul Scherrer Institute (Villigen, Switzerland), Royal Netherlands Naval College, TNO and Shell), Eindhoven University of Technology will investigate further improvements to the measuring system with the ultimate objective of producing cleaner diesel engines.

Source: Netherlands Organization for Scientific Research

Explore further: New computational technique advances color 3-D printing process

Related Stories

Artificial enzymes to reduce carbon dioxide emissions

May 19, 2015

Enzymes are biological catalysts that accelerate chemical reactions, such as the conversion of gaseous carbon dioxide (CO2) into carbonates. Carbonates are the basic component of coral reefs, mollusc shells, ...

Nepal quake could have been much worse: Here's why

May 01, 2015

The structural engineer strides through Kathmandu's old city, past buildings reduced to rubble, buildings whose facades are cracked in dozens of places, like the fractured shell of a hardboiled egg. But it's ...

Traffic emissions may pollute one in three Canadian homes

Apr 21, 2015

A trio of recently published studies from a team of University of Toronto engineers has found that air pollution could be spreading up to three times farther than thought—contributing to varying levels ...

Recommended for you

Defusing bombs by color

May 22, 2015

This March, Cambodia held its first national-level science festival at the Royal University of Phnom Penh, attracting over 10,000 young students to the science booths over the course of three days. At one ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.