Researchers report breakthrough in rapid malaria detection

Dec 20, 2007

A research team led by Dr. Paul Wiseman of the Departments of Physics and Chemistry at McGill University has developed a radically new technique that uses lasers and non-linear optical effects to detect malaria infection in human blood, according to a study published in the Biophysical Journal. The researchers say the new technique holds the promise of simpler, faster and far less labour-intensive detection of the malaria parasite in blood samples.

Malaria is a vector-borne infectious disease spread by parasites of the genus Plasmodium. Most common in tropical and subtropical regions, it is a global scourge with 350 to 500 million new cases – and one to three million fatalities – reported annually. Most of the fatalities are concentrated in sub-Saharan Africa, where the resources and trained personnel currently required to accurately diagnose the disease are spread the thinnest.

Current detection techniques require trained technicians to stain slides, look for the parasite’s DNA signature under the microscope, and then manually count all the visible infected cells, a labourious process dependent on the skill and availability of trained analysts. By contrast, the proposed new technique relies on a known optical effect called third harmonic generation (THG), which causes hemozoin – a crystalline substance secreted by the parasite – to glow blue when irradiated by an infrared laser.

“People who are familiar with music know about acoustic harmonics,” said Dr. Wiseman. "You have a fundamental sound frequency and then multiples of that frequency. Non-linear optical effects are similar: if you shine an intense laser beam of a specific frequency on certain types of materials, you generate multiples of the frequency. Hemozoin has a huge, non-linear optical response for the third harmonic, which causes the blue glow."

Dr. Wiseman and his colleagues now hope to adapt well-established existing technologies like fibre-optic communications lasers and fluorescent cell sorters to quickly move the technique out of the laboratory and into the field.

"We’re imagining a self-contained unit that could be used in clinics in endemic countries," said Dr. Wiseman. "The operator could inject the cell sample directly into the device, and then it would come up with a count of the total number of existing infected cells without manual intervention."

Source: McGill University

Explore further: 'Invisible' protein structure explains the power of enzymes

Related Stories

A novel microscope for nanosystems

Jun 24, 2015

Nanomaterials play an essential role in many areas of daily life. There is thus a large interest to gain detailed knowledge about their optical and electronic properties. Conventional microscopes get beyond ...

A novel source of X-rays for imaging purposes

Jun 16, 2015

Physicists at LMU Munich and the Max Planck Institute of Quantum Optics have validated a novel laser-driven means of generating bright and highly energetic X-ray beams. The method opens up new ways of imaging ...

Recommended for you

New catalyst does more with less platinum

just added

Platinum is a highly reactive and in-demand catalyst across the chemical and energy industries, but a team of University of Wisconsin-Madison and Georgia Institute of Technology scientists could reduce the ...

Learning from biology to accelerate discovery

3 hours ago

A spider's web is one of the most intricate constructions in nature, but its precious silk has more than one use. Silk threads can be used as draglines, guidelines, anchors, pheromonal trails, nest lining, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.