Bodily breakdown explained: How cell differentiation patterns suppress somatic evolution

Dec 14, 2007

Natural selection can occur at the cellular level, where it is detrimental to health. Fortunately it is normally controlled by a well-known pattern of ongoing cell differentiation in the mature tissues of animals, according to a new study published December 14 in PLoS Computational Biology.

The failure of normal cell differentiation patterns may explain cancer and senescent decline with aging, say researchers at the University of Arizona, the Santa Fe Institute, the University of Pennsylvania, and the Wistar Institute.

Darwinian natural selection and evolution is usually studied in populations of organisms, but it also applies to cellular populations; this is called “somatic” evolution. Such somatic evolution tends to reduce cooperation among cells, thus threatening the integrity of the organism.

In this study the authors proposed that a well-known pattern of ongoing cell differentiation in the mature tissues of animals functions to suppress somatic evolution, which is essential to the origin and sustainability of multicellular organisms.

The team, lead by Dr. John Pepper, tested this hypothesis using a computer simulation of cell population dynamics and evolution. The results were consistent with the hypothesis, suggesting that familiar patterns of ongoing cell differentiation were crucial to the evolution of multicellular animals, and remain crucial as a bodily defense against cancer.

Citation: Pepper JW, Sprouffske K, Maley CC (2007) Animal cell differentiation patterns suppress somatic evolution. PLoS Comput Biol 3(12): e250. doi:10.1371/journal.pcbi.0030250 (www.ploscompbiol.org)

Source: Public Library of Science

Explore further: Insect mating behavior has lessons for drones

Related Stories

Evolutionary novelties in vision

Mar 27, 2015

A new study from SciLifeLab at Uppsala University published in PLOS ONE shows that genes crucial for vision were multiplied in the early stages of vertebrate evolution and acquired distinct functions leading to the sophis ...

New thesis maps the origin of colour vision

Mar 26, 2015

Roughly 500 million years ago, the genome of vertebrate animals' early ancestors doubled in size, not just once but twice. This meant that suddenly there were several gene copies which were free to develop new functions. ...

How do vertebrates take on their form?

Feb 16, 2015

A simple physical mechanism that can be assimilated to folding, or buckling, means that an unformed mass of cells can change in a single step into an embryo organized as a typical vertebrate. This is the ...

Recommended for you

Insect mating behavior has lessons for drones

23 hours ago

Male moths locate females by navigating along the latter's pheromone (odor) plume, often flying hundreds of meters to do so. Two strategies are involved to accomplish this: males must find the outer envelope ...

Bacterial tenants in fungal quarters

May 29, 2015

Ludwig Maximilian University of Munich researchers have sequenced the genome of a bacterial symbiont hosted by a mycorrhizal fungus. Analysis of the symbiont's genetic endowment reveals previously unknown ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.