Viral infection affects important cells' stress response

Nov 14, 2007

Viral infection disrupts the normal response of mammalian cells to outside deleterious forces, cleaving and inactivating a protein called G3BP that helps drive the formation of stress granules, which shelter the messenger RNAs that carry the code for protein formation, said researchers from Baylor College of Medicine in Houston.

Only recently have scientists begun to understand the role of stress granules, said Dr. Richard Lloyd, associate professor of molecular virology and microbiology at BCM, and senior author of the report that appears today in the journal Cell Host and Microbe. The stress granules are formed when a cell is subjected to several kinds of stress, such as nutrient deprivation or virus infection.

“When the cell suffers a major insult, it stops expanding. The business of protein synthesis (in which messenger RNA or mRNA’s genetic code gets translated into proteins that carry out cellular activities) is arrested. The messenger RNA goes into storage until conditions improve for the cells,” he said. “Stress granules are a major storage site for the mRNA.”

However, in poliovirus infection (used in the laboratory because it is a prototype for many kinds of viruses), the stress granules are formed early but as the infection continues, the stress granules disperse.

Lloyd and his colleagues found that the poliovirus infection actually cuts or cleaves G3BP, a protein critical in the formation of the stress granules.

“The cells respond to the viral infection, and then virus is shutting that response off,” said Lloyd. In effect, he said, this type of cell response helps prevent the virus from translating its mRNA into virus proteins and killing the cells.

Other viruses may affect other proteins important in this type of stress response, said Lloyd. “Poliovirus has evolved to target G3BP,” he said.

When he and his colleagues mutated G3BP to make it resistant to being cut or cleaved, they found that stress granules could be formed during virus infection and that this inhibited virus growth in the cells.

“With the cleavage resistant form, the cells can continue to make stress granules, and this interferes with virus reproduction” he said.

Source: Baylor College of Medicine

Explore further: Researchers identify unexpected functions in the determination of height for a gene expressed in sperm

Related Stories

Jumping genes have essential biological functions

Feb 19, 2015

"Alu" sequences are small repetitive elements representing about 10% of our genome. Because of their ability to move around the genome, these "jumping genes" are considered as real motors of evolution. However, they were ...

Mutant host cell protein sequesters critical HIV-1 element

Jan 15, 2009

Scientists have identified a new way to inhibit a molecule that is critical for HIV pathogenesis. The research, published by Cell Press in the January 16th issue of the journal Molecular Cell, presents a target for develo ...

Recommended for you

How sleep helps us learn and memorize

3 hours ago

Sleep is important for long lasting memories, particularly during this exam season. Research publishing in PLOS Computational Biology suggests that sleeping triggers the synapses in our brain to both streng ...

Hacking the nervous system

11 hours ago

When Maria Vrind, a former gymnast from Volendam in the Netherlands, found that the only way she could put her socks on in the morning was to lie on her back with her feet in the air, she had to accept that ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.