University of Toronto finds humans and chimps differ at level of gene splicing

November 14, 2007

Researchers are closer to understanding why humans differ so greatly from chimpanzees in the way they look, behave, think, and fight off disease, despite having genes that are nearly 99% identical.

Innovative research from the University of Toronto’s Centre for Cellular and Biomolecular Research has uncovered potential new explanations for these glaring differences. In comparing brain and heart tissue from humans and chimpanzees, U of T Professor Benjamin Blencowe and his team, including graduate student researcher John Calarco, have discovered significant differences in the way genetic material is spliced to create proteins.

“It’s clear that humans are very different from chimpanzees on several levels, but we wanted to find out if it could be the splicing process that accounts for some of these fundamental differences,” says Blencowe, a professor with the Banting and Best Department of Medical Research and Department of Molecular Genetics.

“The surprising thing we found was that six to eight per cent of the alternative splicing events we looked at were showing differences, which is quite significant. And those genes that showed differences in splicing are associated with a range of important processes, including susceptibility to certain diseases.”

Splicing is the process by which the coding regions of genes are joined to generate genetic messages that specify the production of proteins, the key structural and functional constituents of cells. Splicing can occur in alternative ways in the same genetic message to generate more than one type of protein. The new findings reveal that the alternative splicing process differs significantly between humans and chimpanzees.

The study, appearing tomorrow in the Journal of Genes and Development, could have implications for the future study of disease in humans and chimpanzees, Blencowe says.

“Identifying what makes us different can be very important to understanding why certain diseases affect one species and not the other,” he says.

Source: University of Toronto

Explore further: 'Decoding' gene regulation

Related Stories

'Decoding' gene regulation

June 11, 2015

Researchers at the Max F. Perutz Laboratories of the University of Vienna and the Medical University of Vienna as well as at the University of Natural Resources and Life Sciences (BOKU) in Vienna have discovered an entirely ...

Color-coading gene sequences in human cells

March 4, 2015

(Phys.org)—Is there a way to peer inside the nucleus of a living cell and see how the genes interact? After the completion of the Human Genome Project in 2001, researchers have focused on epigenetic factors, spatial orientation, ...

Viral switches share a shape

October 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

Researchers obtain most accurate measures of gene expression

September 4, 2014

RNA-sequencing data analysis method BitSeq developed by Academy Research Fellow Antti Honkela's research group and University of Manchester researchers has been found to be the most accurate gene transcript expression estimation ...

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.