Researchers Discover Surface Orbital 'Roughness' in Manganites

November 20, 2007

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have shown that in a class of materials called manganites, the electronic behavior at the surface is considerably different from that found in the bulk. Their findings, which were published online in the November 18, 2007, issue of Nature Materials, could have implications for the next generation of electronic devices, which will involve increasingly smaller components.

As devices shrink, the proportion of surface area grows in comparison to the material's volume. Therefore, it's important to understand the characteristics of a material's surface in order to predict how those materials behave and how electrons will travel across an interface, said Brookhaven physicist John Hill.

Hill and his fellow researchers were particularly interested in how the outer electrons of atoms in a so-called manganite material are arranged. Manganites - consisting of a rare-earth element such as lanthanum combined with manganese and oxygen - show a huge change in electrical resistance when a magnetic field is applied. Taking advantage of this "colossal magnetoresistance effect" could be the key to developing advanced magnetic memory devices, magnetic field sensors, or transistors.

The research team, which also includes scientists from KEK (Japan), CNRS (France), Ames Laboratory, and Argonne National Laboratory, used x-ray scattering at Brookhaven's National Synchrotron Light Source and Argonne's Advanced Photon Source to study the orbital order - the arrangement of electrons in the outermost shell - of the material at the surface and in its bulk.

"When you cool down the bulk material to a particular temperature, all the orbitals arrange themselves in a very particular pattern," Hill said. "The question is, does the same thing happen at the surface? And if not, how is it different?"

The authors found that at the surface, the orbital order is more disordered than in the bulk material. And, even though the manganite's crystal surface is atomically smooth, the orbital surface is rough. These characteristics could affect the way electrons are transferred across a material's surface and provide fundamental information for future research and development. Next, the researchers plan to look for this surface orbital "roughness" in other materials and test its effect on magnetism.

Source: Brookhaven National Laboratory, by Kendra Snyder

Explore further: New theory leads to radiationless revolution

Related Stories

Cassini image: Dark side of Enceladus

August 26, 2015

Enceladus looks as though it is half lit by sunlight in this view from NASA's Cassini spacecraft, but looks can be deceiving. The area on the right, where surface features can be made out, are actually illuminated by light ...

The gas giant Jupiter

August 26, 2015

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant known as Jupiter. Between it's constant, swirling clouds, its many, many moons, and its red spot, there are ...

Company in Canada gets U.S. patent for space elevator

August 15, 2015

Exploring space while seated on Earth, gazing up on screens in museum theaters or at home via VR headsets. is exciting but the top imagination-grabber is the very idea of finding a way to access space. This is the present-day ...

Do comet fractures drive surface evolution?

August 21, 2015

Extreme thermal stresses experienced by a comet as it orbits around the Sun could explain the extensive fracturing thought to drive its long-term surface erosion, say Rosetta scientists analysing high-resolution images of ...

Recommended for you

New material science research may advance tech tools

August 31, 2015

Hard, complex materials with many components are used to fabricate some of today's most advanced technology tools. However, little is still known about how the properties of these materials change under specific temperatures, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.