Researchers present new solution for miniaturized organic lasers

November 19, 2007
Researchers present new solution for miniaturized organic lasers
Scanning electron micrograph of tantalum pentoxide photonic feedback structures

AMO GmbH, Aachen and IBM Research GmbH, Rüschlikon were able to realize and characterize optimized photonic feedback structures for miniaturized organic lasers.

Efficient organic lasers with small footprint structures demonstrate the key components of future integrated photonic devices for both, communication and sensing applications. Furthermore, they offer an attractive packaging possibility for light-emitting arrays coupled to high-density optical interconnects.

AMO, IBM and the University of Wuppertal investigated mixed-order two dimensional photonic crystal laser structures in combination with a high-gain organic polymer in terms of lasing threshold and device footprints. Based on a thin film of high-index tantalum pentoxide (Ta2O5), mixed-order structures were identified as superior compared to second-order structures. By combining first-order and second-order photonic crystal structures, losses occurring at the edge of the second order structure could be reduced dramatically, leading to a lower laser threshold and to a much smaller footprint of the laser.

Owing to their excellent optical properties and their huge potential for display, sensing, and solar-cell applications, organic semiconductor materials have attracted increasing interest in recent years. These materials exhibit low lasing thresholds and a spectrally broad gain enabling the emission wavelength to be tuned across the entire visible spectrum.

The research activities of the project partners are based on the 6 FP project OLAS (Organic electrically pumped LASer by engineering of heterojunctions in field-effect devices). The project aims at achieving foundational research on Organic Electrically Pumped Laser.

First results have been published in Applied Physics Letters.

Citation: Kristian Baumann, “Organic mixed-order photonic crystal lasers with ultrasmall footprint”, Applied Physics Letters 91, 2007.

Source: AMO GmbH

Explore further: US Navy eyes graphene nanoribbon for ultimate power control system

Related Stories

Polymer mold makes perfect silicon nanostructures

July 3, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into everything from car ...

Extreme lab at European X-ray laser XFEL is a go

July 2, 2015

The Helmholtz Senate has given the green light for the Association's involvement in the Helmholtz International Beamline (HIB), a new kind of experimentation station at the X-ray laser European XFEL in Hamburg, Germany. As ...

Recommended for you

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Quantum matter stuck in unrest

July 31, 2015

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.