Scientists discover record-breaking hydrogen storage materials for use in fuel cells

November 12, 2007

Scientists at the University of Virginia have discovered a new class of hydrogen storage materials that could make the storage and transportation of energy much more efficient — and affordable — through higher-performing hydrogen fuel cells.

Bellave S. Shivaram and Adam B. Phillips, the U.Va. physicists who invented the new materials, will present their finding today at the International Symposium on Materials Issues in a Hydrogen Economy at the Omni Hotel in Richmond, Va.

“In terms of hydrogen absorption, these materials could prove a world record,” Phillips said. “Most materials today absorb only 7 to 8 percent of hydrogen by weight, and only at cryogenic [extremely low] temperatures. Our materials absorb hydrogen up to 14 percent by weight at room temperature. By absorbing twice as much hydrogen, the new materials could help make the dream of a hydrogen economy come true.”

In the quest for alternative fuels, U.Va.’s new materials potentially could provide a highly affordable solution to energy storage and transportation problems with a wide variety of applications. They absorb a much higher percentage of hydrogen than predecessor materials while exhibiting faster kinetics at room temperature and much lower pressures, and are inexpensive and simple to produce.

“These materials are the next generation in hydrogen fuel storage materials, unlike any others we have seen before,” Shivaram said. “They have passed every litmus test that we have performed, and we believe they have the potential to have a large impact.”

The inventors believe the novel materials will translate to the marketplace and are working with the U.Va. Patent Foundation to patent their discovery.

“The U.Va. Patent Foundation is very excited to be working with a material that one day may be used by millions in everyday life,” said Chris Harris, senior licensing manager for the U.Va. Patent Foundation. “Dr. Phillips and Dr. Shivaram have made an incredible breakthrough in the area of hydrogen absorption.”

Source: University of Virginia

Explore further: Researchers develop 'instruction manual' for futuristic metallic glass

Related Stories

Scientists peer into the nanoverse

September 7, 2015

Using state of the art technology, researchers at the Monash Centre for Electron Microscopy (MCEM) have developed new methods which allow tiny displacements of atoms to be witnessed and measured. 

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Waste coffee used as fuel storage

September 1, 2015

Scientists have developed a simple process to treat waste coffee grounds to allow them to store methane. The simple soak and heating process develops a carbon capture material with the additional environmental benefits of ...

Recommended for you

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...

Professor solves 140-year fluid mechanics enigma

October 7, 2015

A Purdue University researcher has solved a 140-year-old enigma in fluid mechanics: Why does a simple formula describe the seemingly complex physics for the behavior of elliptical particles moving through fluid?

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 12, 2007
So what is the material? An alloy of iron and lathanide, or maybe a nickel sponge? What is the surface area of the material to volume of gas ratio? Is the material novel in its atomic makeup or in its physical characteristics, or both?
1 / 5 (1) Nov 12, 2007
why would we want to keep buying fuel? power comes free from the sun.
solar panels on the house and battery electric car (increases range up to 29%), is a much more efficient and environmentally friendly way to go.
4 / 5 (1) Nov 12, 2007
It's a carbon metal complex attached to a substrate according to sciencedayly.
not rated yet Nov 13, 2007
The article should have talked a bit more about what kind of material it is. (But can't blame physorg, since U.Va. seems didn't release those information so far...)
5 / 5 (2) Nov 13, 2007
Although exciting news one should not forget Hydrogen is used as energy carrier. You have to put energy to isolate pure Hydrogen, then you have to put energy to store it. Then comes the energy for transportation of the Hydrygen and it's container. So the overall picture seems pretty ugly to me.
5 / 5 (2) Nov 13, 2007
I've done a fair amount of hydrogen storage research. Until they publish a structure I remain underwhelmed. Especially in consideration of the work that Yaghi (UCLA) is doing with Metal-Organic Frameworks (MOFs) and more recently covalent organic frameworks (COFs).

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.