Discovering new properties in carbon nanotubes

November 6, 2007 By Miranda Marquit feature

The trend in science is moving toward smaller devices. Indeed, single electron devices are considered one way for computing and other electronic applications to become ever smaller in size, while still providing large operating capacities. Single electron devices can also provide a fundamental probe to quantum states in a controllable manner.

One group of scientists in Korea may have found a precursor to such a single electron device. Their work details a quantum dot device fabricated as a carbon nanotube with a double wall by focusing on some of the unexplored electronic structures found in carbon nanotubes. “Eightfold Shell Filling in a Double-Wall Carbon Nanotube Quantum Dot” is published in Physical Review Letters and details the electrical transport properties of such a device.

“There are many different ways to fabricate quantum dots,” Mahn-Soo Choi, a scientist at Korea University, tells PhysOrg.com. “We chose to use a carbon nanotube not only because of its small size and how easy it is to fabricate, but also because it shows highly symmetric structures of electronic transport.”

The experimenters group at Korea University, Sunkyung Moon and Soon-Gul Lee, and the group at the Korea Research Institute of Standards and Science, Woon Song, Joon Sung Lee, Nam Kim lead by Jinhee Kim, and theorist Choi wanted to explore some of the properties of a nanotube with a double wall, as opposed to a single wall. Choi explains that his main duty in the project was to provide interpretation of the experimental results found by Jinhee Kim’s group.

“Before, with so-called multi-wall nanotubes,” Choi says, “people assumed that inner walls did not contribute the electric current.” However, he continues, “the data I interpret from the experimental results my colleagues in this group brought me, shows that the inner wall could contribute.”

Choi explains that the cylindrical symmetry and the strong electron-electron interaction in a carbon nanotube provides each wall with a four-diamond structure. “In the single wall, this makes beautiful symmetry, and shows interesting quantum mechanical electronic structure.” But until now scientists could observe this only in single-wall carbon nanotubes. Choi speculates that this is probably due to defects in multi-walled carbon nanotubes.

“We, however, observed this same symmetry in the inner wall of a double wall carbon nanotube,” Choi says. He says that the quantum dot device his team fabricated shows an eight diamond structure – four from each wall. “The patterns from the inner and outer walls arrange so that we observe only one such structure.”

The scientists working in Korea found that the inner and outer walls of the carbon nanotube interact with each other. Using a back gate to tune the number of electrons in the carbon nanotube, they were able to test its electrical properties. “The patterns on the walls shift when you change the gate voltage,” Choi explains. “The outer wall pattern follows intently the change, but the inner drags behind. This is why sometimes the patterns on the walls shift so that they no longer appear to match.” He goes on to point out that it is the interaction between the walls that offers interesting possibilities.

“By now it’s quite easy to fabricate a quantum dot into a nanostructure electric circuit. This could lead to a single electron tunneling device.” Even though current technology is not where it needs to be, Choi thinks that at some point it will be possible to explore further, continuing the work he and his peers have advanced.

“If we could observe this from a realistic setup,” he says, “we can explore it and then probably manipulate this quantum state in the nanostructure to control the quantum mechanical state of electrons. At the moment it is not possible with our present technology, but our work shows promise to pave the way to quantum engineering in single electron devices.”

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Channeling valleytronics in graphene: Researchers discover 1-D conducting channels in bilayer graphene

Related Stories

Synchronised rotations of molecules for novel investigations

March 17, 2015

Scientists in Hamburg have resorted to a physical trick to persuade entire groups of molecules to perform synchronized cartwheels, virtually endlessly. This technique opens up new opportunities for imaging molecules and their ...

We must defend science if we want a prosperous future

March 3, 2015

Today's Australians are, by far, the best educated cohort in our history –- on paper, anyway -– but this is not reflected in the quality of our political discourse. We appear to be lacking in courage, judgement, capacity ...

Where are helium atoms in molecule?

December 10, 2014

Frankfurt physicists have once again contributed to resolving a disputed matter of theoretical physics. Science has long since known that, contrary to the old school of thought, helium forms molecules of two, three or even ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.