Probing the nurseries of miniature planetary systems

November 21, 2007

New research led by a University of St Andrews astronomer has found evidence for what might be the raw material for the beginning of shrunken versions of our solar system - miniature worlds in the making.

In their study Dr Alexander Scholz, SUPA Advanced Fellow at the University of St Andrews, and Professor Ray Jayawardhana, from the University of Toronto, challenge the assumption that other planetary systems in the Universe would necessarily look like our own solar system.

The astronomers have found that the birthplaces of planets exist not only around young stars but also around planemos (short for planetary mass objects) that are not much larger or heavier than Jupiter. This may imply the existence of miniature solar systems with a central object having only about 1% of the mass of the Sun.

Since their discovery in 2000, the nature and origin of the enigmatic planemos has been a hot topic - are they tiny stars or giant planets, kicked out from a young planetary system? The new study now suggests that the former scenario is much more likely.

In a paper to be published in the Astrophysical Journal (Letters) Dr Scholz and Professor Jayawardhana used the Spitzer Space Telescope to observe 18 planemos in a star cluster in Orion that is about 3 million years old. At that age many young stars are still surrounded by disks of dust and gas which may evolve into planetary systems. The dust in these disks 'glows' in the infrared wavelength range and can therefore be seen with infrared cameras.

The new observations show that about one third of the planemos are also surrounded by dusty disks, thus these relatively small objects seem to have a star-like infancy.

Evidence for a star-like formation of planemos has been presented previously by other teams but the new observations constitute the first systematic survey and push our knowledge of planemos into new territory.

"The results demonstrate that long-lived dusty disks, the nurseries of planets, are commonly found even around extremely low-mass objects. This could indicate that planetary systems may form even when the central 'star' is not a star, but a planemo.

Imagine a solar system where planets encircle an object which itself is not much larger than a planet," explains Dr Scholz.

Although the new findings have not settled the origins of planemos Dr Scholz and Professor Jayawardhana believe the results bring us one step closer.

"How puny an object could nature produce in the same way that it made our Sun? That's the big question motivating our research. The answer will tell us a lot about the star formation process as well as about the true diversity of planetary systems out there," said Professor Jayawardhana.

Source: University of St Andrews

Explore further: Do 'Planemos' Have Progeny?

Related Stories

Do 'Planemos' Have Progeny?

June 5, 2006

Two new studies, based on observations made with ESO's telescopes, show that objects only a few times more massive than Jupiter are born with discs of dust and gas, the raw material for planet making. This suggests that miniature ...

Baby 'planemos' can be born as twins

August 3, 2006

The cast of exoplanets has an extraordinary new member. Using ESO's telescopes, astronomers have discovered an approximately seven-Jupiter-mass companion to an object that is itself only twice as hefty. Both objects have ...

Recommended for you

Hubble catches a transformation in the Virgo constellation

December 9, 2016

The constellation of Virgo (The Virgin) is especially rich in galaxies, due in part to the presence of a massive and gravitationally-bound collection of over 1300 galaxies called the Virgo Cluster. One particular member of ...

Khatyrka meteorite found to have third quasicrystal

December 9, 2016

(Phys.org)—A small team of researchers from the U.S. and Italy has found evidence of a naturally formed quasicrystal in a sample obtained from the Khatyrka meteorite. In their paper published in the journal Scientific Reports, ...

Scientists sweep stodgy stature from Saturn's C ring

December 9, 2016

As a cosmic dust magnet, Saturn's C ring gives away its youth. Once thought formed in an older, primordial era, the ring may be but a mere babe – less than 100 million years old, according to Cornell-led astronomers in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.