Potential new therapeutic molecular target to fight cancer

November 1, 2007

Researchers at the Virginia Commonwealth University Massey Cancer Center have identified the enzyme sphingosine kinase 2 as a possible new therapeutic target to improve the efficacy of chemotherapy for colon and breast cancer.

In the Nov. 1 issue of the journal Cancer Research, researchers examined human colon and breast cancer cells and established a role of sphingosine kinase 2 (SphK2), an enzyme that forms the potent lipid mediator sphingosine-1-phosphate in the death of cancer cells mediated by the chemotherapeutic drug, doxorubicin.

Doxorubicin is able to kill cancer cells by working with p53, one of the most protective anti-cancer proteins in the human body. However, doxorubicin also relies on p53- independent mechanisms to induce death in colon and breast cancer cells.

“Understanding how doxorubicin kills in a p53-independent manner is a major goal of cancer researchers because most cancer cells have mutated p53,” said lead author Sarah Spiegel, Ph.D., chair and professor in the VCU Department of Biochemistry and Molecular Biology and co-leader of the cancer center's cancer cell biology program.

According to Spiegel, the study demonstrated that SphK2 is important for p53-independent induction of expression of p21, a cyclin-dependent kinase inhibitor. This p21 regulates the cell cycle, and apoptosis or programmed cell suicide, mediated by doxorubicin. Human colon and breast cancer cells were killed more efficiently by doxorubicin when SphK2 was removed from the cells.

“Therefore, the findings suggest that SphK2 influences the balance between cytostasis, and apoptosis of human cancer cells,” Spiegel said. Cytostasis refers to the stoppage of cellular growth and multiplication.

Spiegel said that cell death was induced by doxorubicin and decreased p21.

Spiegel, who is internationally recognized for her pioneering work on new lipid mediators that regulate cell growth and cell death, and her colleagues, first discovered the role of sphingosine-1-phosphate in cell growth regulation nearly a decade ago. Spiegel and her team are continuing this work to better understand the functions of these enzymes.

Source: Virginia Commonwealth University

Explore further: Transforming living cells into tiny lasers

Related Stories

Transforming living cells into tiny lasers

July 28, 2015

In the last few decades, lasers have become an important part of our lives, with applications ranging from laser pointers and CD players to medical and research uses. Lasers typically have a very well-defined direction of ...

Recommended for you

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

Quantum Theory May Explain Wishful Thinking

April 14, 2009

(PhysOrg.com) -- Humans don’t always make the most rational decisions. As studies have shown, even when logic and reasoning point in one direction, sometimes we chose the opposite route, motivated by personal bias or simply ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.