Organic Molecules Stay on Top

November 19, 2007

The van der Waals force, a weak attractive force, is solely responsible for binding certain organic molecules to metallic surfaces. In a model for organic devices, it is this force alone that binds an organic film to a metallic substrate.

This data, recently published in Physical Review Letters, represents the latest findings from a National Research Network (NRN) supported by the Austrian Science Fund FWF. These findings mean that numerous calculation models for the physical interactions between thin films and their carrier materials will need to be revised.

Although they fulfil complex functions when used, for example, as computer chips, inorganic semiconductors have a simple construction that greatly limits their application. The same does not apply to semiconductors made of organic materials. Because organic molecules are extremely flexible, they can be used in a whole new range of applications. However, before this advantage can be exploited to the full, scientists need to have a better understanding of the far greater complexity of these materials over their inorganic counterparts.

Organic semiconductors are manufactured by applying thin films of an electrically conductive organic material to a carrier surface. When carrying out this process, it is important to understand the interactions that occur at the interfaces between the carrier material and the organic material. A team from the "Interface controlled and functionalised organic thin films" National Research Network (NRN) at the University of Leoben has made an important contribution to scientific understanding in precisely this field. Using complex calculations, the team has been able to show that a thin film of organic thiophene is held on to a copper surface solely by the van der Waals force. The team calculated that the adsorption energy involved is -0.50 eV.

The spokesperson for the NRN, Prof. Helmut Sitter from the Institute of Semiconductor and Solid State Physics at Johannes Kepler University (JKU) in Linz, explains: "The van der Waals force is a weakly interacting force between atoms that occurs as a result of asymmetric charge distribution in atoms. We now know that this exerts a highly significant influence on the kinds of extremely thin material films used to manufacture organic semiconductors. Indeed, this force can successfully bind the materials entirely on its own. However, due to its weakness, several previous methods used to calculate the interactions between different materials have attached only minor importance to this force, or have ignored it altogether." This would also seem to provide some explanation for why the generalized gradient approximation (GGA) often used in such instances has been unable to satisfactorily explain the bonding behaviour in thin layers. In fact, these newly published results could explain the discrepancies that have long been found between various experimental data and models for calculating the interaction between thin layers.

The new data adds to our fundamental understanding of the interactions that take place at interfaces. The influence of the van der Waals force also indicates that no charge is transferred between the atoms of the organic materials and their substrates in the calculated system. This finding is of key significance to the production and functionality of organic semiconductors.

Citation: Importance of Van Der Waals Interaction for Organic Molecule-Metal Junctions: Adsorption of Thiophene on Cu(110) as a Prototype, P. Sony, P. Puschnig, D. Nabok & C. Ambrosch-Draxl. Phys. Rev. Lett. 99, 176401 (2007).

Source: Public Relations for Research & Development, Austria

Explore further: Science on the surface of a comet

Related Stories

Science on the surface of a comet

July 31, 2015

Complex molecules that could be key building blocks of life, the daily rise and fall of temperature, and an assessment of the surface properties and internal structure of the comet are just some of the highlights of the first ...

Where is solar power headed?

July 22, 2015

Most experts agree that to have a shot at curbing the worst impacts of climate change, we need to extricate our society from fossil fuels and ramp up our use of renewable energy.

Secrets of dolerite sills

July 20, 2015

The exploitation of mineral deposits always creates debates around economic necessity versus environmental preservation. Fracking for gas in the Karoo region of South Africa is currently vigorously debated. This article is ...

Recommended for you

New device converts DC electric field to terahertz radiation

August 4, 2015

Terahertz radiation, the no-man's land of the electromagnetic spectrum, has long stymied researchers. Optical technologies can finagle light in the shorter-wavelength visible and infrared range, while electromagnetic techniques ...

The resplendent inflexibility of the rainbow

August 4, 2015

Children often ask simple questions that make you wonder if you really understand your subject. An young acquaintance of mine named Collin wondered why the colors of the rainbow were always in the same order—red, orange, ...

For faster battery charging, try a quantum battery?

August 3, 2015

(Phys.org)—Physicists have shown that a quantum battery—basically, a quantum system such as a qubit that stores energy in its quantum states—can theoretically be charged at a faster rate than conventional batteries. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

BrianH
not rated yet Nov 30, 2007
I'm curious about what language these articles are originally written in at Physorg. They are littered with peculiar misuses of prepositions, pronouns, and punctuation which I have found to be characteristic of translated material or text written by ESL speakers.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.