Researchers develop better membranes for water treatment, drug delivery

November 29, 2007

Researchers at the University of Illinois have developed a new generation of biomimetic membranes for water treatment and drug delivery. The highly permeable and selective membranes are based on the incorporation of the functional water channel protein Aquaporin Z into a novel A-B-A triblock copolymer.

The experimental membranes, currently in the form of vesicles, show significantly higher water transport than existing reverse-osmosis membranes used in water purification and desalination. The researchers describe their membranes in a paper accepted for publication in the Proceedings of the National Academy of Sciences. The paper is to be published in PNAS Online Early Edition this week.

“We took a close look at how kidneys so efficiently transport water through a membrane with aquaporins, and then we found a way to duplicate that in a synthetic system,” said Manish Kumar, a graduate research assistant at the U. of I., and the paper’s lead author.

Unlike most biological membranes, polymer membranes are very stable and can withstand considerable pressure – essential requirements for water purification and desalination processes. “Placing aquaporins in materials that we can use outside the body opens doors to industrial and municipal applications,” Kumar said.

To make their protein-polymer membranes, the researchers begin with a polymer that self-assembles into hollow spheres called vesicles. While the polymer is assembling, the researchers add Aquaporin Z – a protein found in Escherichia coli bacteria.

“Aquaporin Z makes a hole in the membrane that only water can go through, so it’s both fast and selective,” said membrane specialist Mark Clark, a professor of civil and environmental engineering and one of the paper’s co-authors.

“By varying the amount of Aquaporin Z, we can vary the membrane’s permeability,” Kumar said, “which could be very useful for drug-delivery applications.”

With their high permeability and high selectivity, the biomimetic membranes also are ideal for water treatment by desalination, which is becoming increasingly important for water purification in semiarid coastal regions.

When tested, the productivity of the Aquaporin Z-incorporated polymer membranes was more than 10 times greater than other salt-rejecting polymeric membranes.

Currently, the experimental polymer membranes exist only as small vesicles. “Our next step is to convert the vesicles into larger, more practical membranes,” Kumar said. “We also want to optimize the membranes for maximum permeability.”

Source: University of Illinois at Urbana-Champaign

Explore further: Nano-style sheets may aid health, shield ecosystem

Related Stories

Nano-style sheets may aid health, shield ecosystem

August 13, 2015

Microscopically, "nanomembrane" sheets made from nylon resemble a tangled web. The tiny iron oxide particles on the fiber surfaces can help clean toxic chemicals from water, but if the particles get separated from the web, ...

Fighting climate change with membrane-based cement technology

June 12, 2015

The cement industry is one of the largest sources worldwide of carbon emissions, accounting for around five per cent of global emissions. New technologies being developed by the Norwegian University of Science and Technology ...

Bacterial protein serves as sensor

June 10, 2015

A German-French team led by Prof. Dr. Jan C. Behrends and Dr. Gerhard Baaken from the University of Freiburg and Dr. Abdelghani Oukhaled from the Universities of Evry and Cergy-Pontoise has developed a method capable of precisely ...

Living in a material world

June 1, 2015

A pop-up, waterproof, solar-powered shelter. It sounds like science fiction, but a new multi-disciplinary research team is making this dream a reality. The 'Architextile' project combines architecture, textiles and material ...

Producing hydrogen cheaply through simplified electrolysis

April 28, 2015

A simplified and reliable device developed at EPFL should enable hydrogen production at low cost. Researchers were able to perform water electrolysis without using the expensive membrane placed between the electrodes in conventional ...

Recommended for you

A marine creature's magic trick explained

September 2, 2015

Tiny ocean creatures known as sea sapphires perform a sort of magic trick as they swim: One second they appear in splendid iridescent shades of blue, purple or green, and the next they may turn invisible (at least the blue ...

Prawn Nebula: Cosmic recycling

September 2, 2015

Dominating this image is part of the nebula Gum 56, illuminated by the hot bright young stars that were born within it. For millions of years stars have been created out of the gas in this nebula, material which is later ...

Comet Hitchhiker would take tour of small bodies

September 2, 2015

Catching a ride from one solar system body to another isn't easy. You have to figure out how to land your spacecraft safely and then get it on its way to the next destination. The landing part is especially tricky for asteroids ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.