New Life for Linac

November 26, 2007
New Life for Linac
Crews working in the linac tunnel install two 4,000-pound magnets as part of the second bunch compressor for the LCLS.

After years of planning and hard work involving teams from every corner of the lab, SLAC's venerable linac has undergone the most radical set of alterations in its 40+ year career. Although a handful of minor tweaks remain, the effort to reconfigure the linac for the Linac Coherent Light Source (LCLS) is now just about complete.

"It's an exciting time and our first experiences have been very positive. We all look forward to the next level," said Paul Emma, head of the LCLS accelerator physics group. "The entire team is very happy with the results, but also glad for a break."

For decades, SLAC's two-mile long linac has enjoyed a resume of superlatives. Add to the list its new role as the injector and accelerator portion of the LCLS, the world's first hard-x-ray free electron laser. Commissioning of the injector portion began last April, and now, not only does the quality of the beam—emittance values, total charge, beam stability, etc.—meet or exceed design expectations, but the electron injector system is considered to be the brightest electron source in the world.

Although still fully capable of providing electron beams for high-energy physics experiments, the newly revved-up linac is now optimized to provide the ultra-fast, ultra-short pulses the LCLS will require. The newly reconfigured linac is specially optimized to create and accelerate the electron beams that will be used to generate the LCLS's powerful x-rays.

Converting the existing linac to an electron injector and accelerator for a free-electron laser was no small task, requiring the expertise of a host of SLAC working groups—including Controls, Alignment, Metrology, Environmental Safety and Health, Rigging, the Accelerator Division, Manufacturing and Purchasing, in addition to dozens of contractors.

"It was truly a site-wide operation," said Operations Manager Kathleen Ratcliffe, who oversaw the initial stages of this year's installation.

Many components, including beam diagnostic modules, magnets and accelerator sections had to be added, removed or shuffled to new locations.

"I called it the linac shuffle because we were moving stuff around and putting new stuff in—it was all spread out. There was a lot of movement," said Operations Manager Greg Diaz, who, along with Ratcliffe, oversaw the final stages of the project during the current shutdown.

Among the most complex of the recent installations was the second of two bunch compressors, or magnet chicanes, designed to shorten the bunch length of each electron pulse. The first such chicane, measuring about 18 feet long, was installed a year ago. The second chicane measures about 75 feet long and comprises enormous quadrupole magnets, each weighing 4,000 pounds, or about as much as a Ford Explorer. The scale of these components is necessary because the beam energy is higher by the time the pulses reach the second chicane. Between the two chicanes, the beam increases in energy from 250 Mev to 4.3 GeV, making the electrons harder to steer and requiring larger magnets.

Now that all of the LCLS-related hardware is in place along the linac, commissioning can continue in anticipation of first light in 2009. Emma says the challenge facing the team now will be to preserve the unprecedented beam brightness through to the Undulator Hall.

Source: by Brad Plummer, SLAC

Explore further: Study of SLAC National Accelerator Laboratory explores the state of "Big Science"

Related Stories

New 'molecular movie' reveals ultrafast chemistry in motion

June 19, 2015

Scientists for the first time tracked ultrafast structural changes, captured in quadrillionths-of-a-second steps, as ring-shaped gas molecules burst open and unraveled. Ring-shaped molecules are abundant in biochemistry and ...

3D potential through laser annihilation

June 16, 2015

Whether in the pages of H.G. Wells, the serial adventures of Flash Gordon, or that epic science fiction saga that is Star Wars, the appearance of laser beams—or rays or phasers or blasters—ultimately meant the imminent ...

SLAC scientists create twisted light

September 19, 2013

(Phys.org) —Scientists at SLAC have found a new method to create coherent beams of twisted light – light that spirals around a central axis as it travels. It has the potential to generate twisted light in shorter pulses, ...

Small X-band photoinjector packs powerful punch

September 25, 2012

(Phys.org)—Accelerator physicists at SLAC have started commissioning the world's most compact photoinjector – a device that spits out electrons when hit by light. Photoinjectors are used to generate electrons for free-electron ...

Recommended for you

New device converts DC electric field to terahertz radiation

August 4, 2015

Terahertz radiation, the no-man's land of the electromagnetic spectrum, has long stymied researchers. Optical technologies can finagle light in the shorter-wavelength visible and infrared range, while electromagnetic techniques ...

The resplendent inflexibility of the rainbow

August 4, 2015

Children often ask simple questions that make you wonder if you really understand your subject. An young acquaintance of mine named Collin wondered why the colors of the rainbow were always in the same order—red, orange, ...

For faster battery charging, try a quantum battery?

August 3, 2015

(Phys.org)—Physicists have shown that a quantum battery—basically, a quantum system such as a qubit that stores energy in its quantum states—can theoretically be charged at a faster rate than conventional batteries. ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.