Ice age imprint found on cod DNA

November 14, 2007

An international team of researchers, led by the University of Sheffield, has demonstrated how Atlantic cod responded to past natural climate extremes. The new research could help in determining cods vulnerability to future global warming.

With fishing pressures high and stock size low, there is already major concern over the current sustainability of cod and other fisheries. The new findings, published in the journal, Proceedings of the Royal Society B, show that natural climate change has previously reduced the range of cod to around a fifth of what it is today, but despite this, cod continued to populate both sides of the North Atlantic.

The researchers used a computer model and DNA techniques to estimate where cod could be found in the ice age, when colder temperatures and lower sea-levels caused the extinction of some populations and the isolation of others.

The computer models used to estimate ice-age habitats suitable for cod were developed by Professor Grant Bigg, Head of the University of Sheffield’s Department of Geography. These climatic analyses were combined with genetic studies by US researchers at Duke University and the University of California, and ecological information prepared by colleagues at the University of East Anglia and the Institute of Marine Research in Norway.

On land, plants and animals (including humans) are known to have moved further south when the northern ice sheets reached their maximum extent around 20,000 years ago. Similar migrations must have happened for plankton and fish in the sea. But there were two added complications: firstly, greatly reduced sea levels meant that many shallow and highly productive marine habitats around Europe and North America ceased to exist. Secondly, the ice-age circulation patterns in the North Atlantic caused the temperature change between tropical and polar conditions to occur over a much shorter north-south distance, reducing the area suitable for temperate species – such as cod.

The new analyses included these effects, together with other environmental and ecological information, in order to estimate where it was possible for Atlantic cod to reproduce and survive.

The results indicated that the ice-age range of Atlantic cod extended as far south as northern Spain, but the total area of suitable habitat was much more restricted. Nevertheless, populations of cod continued to exist on both sides of the North Atlantic. These findings were confirmed by genetic data, based on over a thousand DNA analyses of present-day cod populations, from Canada, Greenland, Iceland and around Europe.

Professor Bigg said: “This research shows that cod populations have been able to survive in periods of extreme climatic change, demonstrating a considerable resilience. However this does not necessarily mean that cod will show the same resilience to the effects of future climatic changes due to global warming.”

Source: University of Sheffield

Explore further: Researchers find explanation for interacting giant, hidden ocean waves

Related Stories

Research group confirms white shark nursery off Long Island

October 6, 2016

A privately funded great white shark research group has confirmed the waters off Long Island's Montauk Point are a "nursery," a first in the study of great whites in the northwest Atlantic Ocean, the organization and other ...

The Atlantic cod's sex gene revealed

September 2, 2016

New methods at University of Oslo have made it possible to determine the Atlantic cod´s gender genetically. This could increase profits on cod in aquaculture.

Ocean acidification threatens cod recruitment in the Atlantic

August 24, 2016

Increasing ocean acidification could double the mortality of newly-hatched cod larvae. This would put populations of this economically important fish species more and more under pressure if exploitation remains unchanged. ...

Changes in the immune system lead to success

August 30, 2016

The sequencing of the Atlantic cod genome in 2011 demonstrated that this species lacks a crucial part of its immune system. In a follow-up study, Kjetill S. Jakobsen and collaborators have investigated a large number of additional ...

Recommended for you

Entire Himalayan arc can produce large earthquakes

October 26, 2016

The main fault at the foot of the Himalayan mountains can likely generate destructive, major earthquakes along its entire 2,400-kilometer (1,500-mile) length, a new study finds. Combining historical documents with new geologic ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.