'Fingerprints' help find genes involved in differentiation

Nov 14, 2007

A database that includes the molecular profiles of the major components of the blood system – including the stem cells and the cells differentiated from them – enabled researchers at Baylor College of Medicine (BCM) in Houston to identify at least two genes involved in the differentiation process for two different kinds of blood cells.

In a report that appears in the journal Cell Stem Cell today, Dr. Margaret A. Goodell, professor of pediatrics and director of BCM’s STem Cells and Regeneration Center (STaR), and her colleagues described how they used their database to determine what was unique to each blood cell and what was common to all the cell types.

Understanding differentiation and what signals cause the early or progenitor cells to become the more specialized tissues that make multicellular organisms – such as mammals – possible is of vital concern to scientists and particularly stem cell biologists.

In this case, the scientists identified between 100 and 400 genes uniquely expressed in each cell type and termed these “lineage fingerprints,” because they mark the different cells that arise from the various stem cells.

“With unique genes, some will be responsible for generating those cell types,” said Goodell. She and her colleagues caused two of the genes (Zfp105 from the natural killer or NK cell lineage, and Ets2 from the monocyte (white blood cells with a singe nucleus that surround and ingest foreign materials) lineage to overexpress or make more than usual amounts of protein.

“They ended up driving differentiation,” said Goodell. That means that genes encouraged progenitor or early forms of the cells to become the mature or final blood cells that carry out specific tasks in the blood system.

“We are hoping that if we screen more of these genes that we can identify others that cause differentiation,” she said.

In the future, she said, scientists might consider ways to use the genes to help generate the differentiated cells in the laboratory as a particular form of treatment or developing drugs to block the action of the genes. Overproduction of certain blood or immune system cells can lead to cancer or autoimmune disease.

The three-year study involved considerable teamwork, said Goodell, with individuals in the lab taking responsibility for studies involving the different populations of blood cells.


Source: Baylor College of Medicine

Explore further: AMA: avoiding distress in medical school

Related Stories

Single cells seen in unprecedented detail

Apr 27, 2015

Researchers have developed a large-scale sequencing technique called Genome and Transcriptome Sequencing (G&T-seq) that reveals, simultaneously, the unique genome sequence of a single cell and the activity ...

Recommended for you

AMA: avoiding distress in medical school

9 hours ago

(HealthDay)—Understanding the key drivers underlying medical students' distress can help address the issues and enhance student well-being, according to an article published by the American Medical Association.

European court to rule on right-to-die case

May 21, 2015

Europe's human rights court will on June 5 rule on whether a man in a vegetative state can be taken off life support, a case that has ignited a fierce euthanasia debate in France, a spokesman said Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.