Europe's Galileo signals used for ocean remote sensing in space

November 23, 2007

Surrey Satellite Technology Ltd and the University of Surrey have succeeded in detecting a weakly reflected Galileo signal off the ocean surface using the GPS Reflectometry Experiment on one of SSTL’s small satellites, UK-DMC. The reflection was received off the North coast of Australia on 4th November 2007, and the shape of the reflection gives an indication of the ocean roughness, and hence the weather at that place and time (where the wind speed was around 22 km/h, or 14 mph).

The GPS Reflectometry Experiment was carried into space on the British remote sensing satellite UK-DMC launched in 2003. The experiment was a pioneering demonstration that GPS reflections could be used as a means to determining the roughness of the ocean, using a method called ‘bistatic radar’ or ‘forward scatterometry’. Unlike other radar remote sensing techniques, no transmitter is required as GPS satellites are already broadcasting predictable signals to the Earth 24 hours a day. A satellite dedicated to GPS reflectometry would only therefore need to carry a modified GPS receiver and an antenna, which could potentially be accommodated on a tiny 10 kg satellite platform at a low cost.

GIOVE-A, the first Galileo demonstration satellite, also coincidentally built by SSTL was commissioned by the European Space Agency and has been transmitting prototype Galileo signals since its launch in December 2005. While the orbiting experiment on UK-DMC is not optimised for Galileo signals, enough of the reflected signal energy was received to allow the detection and plotting of the weak signal from a short 20 second data collection by a PhD student at the University of Surrey, Philip Jales.

Dr Martin Unwin, head of the GNSS/GPS team in SSTL, commented: "This is an important achievement in the field of remote sensing, and shows the potential offered by Galileo for scientific purposes. Signals from Galileo in conjunction with those from GPS, and the Russian and Chinese systems, Glonass and Compass, can all be used as part of a new tool for ocean sensing. A constellation of small satellites could be deployed at a low cost to take measurements over the oceans where there are large gaps in forecast knowledge at present.

More navigation satellites mean more measurements, and some the future high bandwidth signals transmitted by Galileo in particular will enable higher resolution measurements of special interest to scientists, for example, in resolving wave heights. An improved measurement system in space such as this could be used to warn mariners of storms, and as an input towards global climate change models, and potentially even to detect Tsunamis."

The UK-DMC Reflectometry Experiment has also previously been used to detect GPS signals reflected off ice and, surprisingly, off dry land. The value of these measurements has yet to be fully explored, but they may be used as inputs for climate modelling.

A future revision of the experiment, the ‘GNSS Reflectometry Instrument’ is now being designed at Surrey with a view to a flight on a future satellite mission. It is being designed specifically to receive Galileo signals as well as those from GPS, with the intention of real time processing. "The sooner Galileo is up and transmitting the better," said Dr Unwin.

Source: University of Surrey

Explore further: Positioning systems improve airport logistics

Related Stories

Positioning systems improve airport logistics

October 1, 2015

An airport apron bustles with traffic. The tow tractors, tankers and buses moving busily around an aircraft run the risk of colliding. An enhanced positioning system will increase safety and the efficiency of logistical operations ...

Receivers key to Galileo success

October 26, 2006

Europe's navigation system requires new receiver designs to make use of the transmissions from its satellite constellation. European industry is developing and supplying receivers for the in-orbit validation of the system.

Second Galileo satellite launched successfully

April 27, 2008

Designed to provide the whole planet with a highly accurate Global Navigation Satellite System under civilian control, Europe’s Galileo project moved a step closer as a second test satellite was launched successfully from ...

Two years in space for Galileo satellite

December 19, 2007

On 28 December, it will be two years since GIOVE-A - the first Galileo satellite - was launched by a Soyuz rocket from Baikonur, in Kazakhstan. This satellite demonstrates the progress Europe has made in setting up its own ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.