Dark energy -- 10 years on

November 30, 2007

Three quarters of our universe is made up of some weird, gravitationally repulsive substance that was only discovered ten years ago – dark energy. This month in Physics World, Eric Linder and Saul Perlmutter, both at the University of California at Berkeley, reveal how little we know about dark energy and describe what advances in our knowledge of dark energy we can expect in the coming decade from a series of planned space missions.

Perlmutter was the leader of one of the two separate teams of astrophysicists who concluded, from watching distant supernovae, that the cosmic expansion was accelerating and not slowing under the influence of gravity, as was previously thought. The two teams' finding confirmed just how little we know about our universe.

The two teams' discovery has led to the creation of the "concordance model" of the universe, which states that 75 per cent of our universe is made up of dark energy, 21 per cent of dark matter, another substance we know little about, with only a remaining four per cent being made up of matter that we do understand. The most conventional explanation is that dark energy is some kind of "cosmological constant" that arises from empty space not being empty, but having an energy as elementary particles pop in and out of existence.

Since the first evidence for the accelerating universe was made public in early 1998, astrophysicists have provided further evidence to shore up the findings and advances in the measurement methods bode well for increasing our understanding in the future.

Galaxies and the cosmic background hold some significant clues. Equipment that can make a more robust comparison between galaxy patterns across the sky and investigate temperature fluctuations in the cosmic microwave background, helping trace the pattern of galaxy formation, is being made available. Methods for further observation of supernovae are expanding and improving too.

Eric Linder and Saul Perlmutter write, “The field of dark energy is very young and we may have a long and exciting period of exploration ahead before it matures.”

The December issue also includes reporting from Robert P Crease, historian at the Brookhaven National Laboratory, US, on the difficulty of deciding who should gain credit for the discovery of the accelerating universe and comment from Lawrence M Krauss, director of the Center for Education and Research in Cosmology and Astrophysics at Case Western Reserve University, US, on the possibility that we may never be able to tell if dark energy is a cosmological constant or something more exotic still.

Link: physicsworld.com

Source: Institute of Physics

Explore further: Mysterious neutrinos take the stage at SLAC

Related Stories

Mysterious neutrinos take the stage at SLAC

September 24, 2015

Of all known fundamental particles, neutrinos may be the most mysterious: Although they are highly abundant in the universe and were discovered experimentally in 1956, researchers still have a lot left to learn about them. ...

Researchers propose new way to chart the cosmos in 3D

September 18, 2015

If only calculating the distance between Earth and far-off galaxies was as easy as pulling out the old measuring tape. Now UBC researchers are proposing a new way to calculate distances in the cosmos using mysterious bursts ...

How we plan to bring dark matter to light

September 17, 2015

Long before we had the atomic theory of matter, scientists knew the air was real, even though it was invisible. This was because we could see its action as the wind caressed the leaves in trees.

Recommended for you

Using optical fiber to generate a two-micron laser

October 9, 2015

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method.

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Nov 30, 2007
Why not say we know nothing, we know nothing.

The whole article is a guessing game without real proof.
3 / 5 (2) Dec 01, 2007
We don't know nothing. We understand. At least I do. And I'm getting frustrated trying to explain it to you lot. See what he says above "weird, gravitationally repulsive substance" It's simple.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.