Carbon nanotubes could go antiballistic

Nov 09, 2007

CSIRO (Australia) has been granted $2 million under the Defence Capability and Technology Demonstrator (CTD) Program to demonstrate the capabilities of carbon nanotubes as strong, lightweight antiballistic materials.

Principal Research Scientist with CSIRO Textile and Fibre Technology, Dr Stephen Hawkins, says currently available body armour is typically heavy, stiff and hot to wear.

“Generations of polymers and ceramics have been developed to keep pace with the threat and lessen the burden of the armour but now a new material – carbon nanotubes or CNTs – is set to move ballistic protection into new territory,” he says.

CSIRO’s Carbon Nanotubes for Ballistic Protection project was one of eight selected as part of the latest round of Defence CTD Program funding announced last night.

Dr Hawkins says CNTs are amongst the first of the new wave of nano-structured materials and offer extraordinary properties of strength, stiffness and lightness.

“The challenge is to capture the potential of these new materials at the macro level. CNTs are fibres of pure carbon that are only 1 to 100 nanometres in diameter but up to millimetres in length. Synthesising and manipulating these myriad tiny fibres into ordered structures requires a combination of novel processing skills coupled with a fundamental understanding of fibre behaviour, Dr Hawkins said.

“To give a sense of scale, a human hair is typically 100 microns, or 100,000 nanometres in diameter. If hair had the same proportions as nanotubes, it would be from tens to hundreds of metres long, with a great capacity for tangling!”

CSIRO Textile and Fibre Technology has established a capability to produce very highly specified CNTs with the unique characteristic of being able to be drawn directly into yarn. This in combination with other advanced materials will form the basis of the new antiballistic structures.

“No single material has all of the properties required for ballistic protection, so a successful application of CNTs would see them as part of an integrated system with greater strength and flexibility and reduced weight,” Dr. Hawkins says.

Chief Defence Scientist, Dr Roger Lough, announced the funding at the annual Capability and Technology Program Dinner held in Canberra.

Source: CSIRO

Explore further: Artificial muscles get graphene boost

Related Stories

Architects to hatch Ecocapsule as low-energy house

5 hours ago

Where people call home depends on varied factors, from poverty level to personal philosophy to vanity to community pressure. Ecocapsule appears to be the result of special factors, a team of architects applying ...

California farmers agree to drastically cut water use

9 hours ago

California farmers who hold some of the state's strongest water rights avoided the threat of deep mandatory cuts when the state accepted their proposal to voluntarily reduce consumption by 25 percent amid ...

Apple may deliver ways to rev up the iPad, report says

9 hours ago

MacRumors last month said that the latest numbers from market research firm IDC's Worldwide Quarterly Tablet Tracker revealed Apple stayed on as the largest vendor in a declining tablet market. The iPad ...

Recommended for you

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

Printing 3-D graphene structures for tissue engineering

May 19, 2015

Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its high electrical conductivity, ability to store energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.