Blue dye could hold the key to super processing power

November 28, 2007

A technique for controlling the magnetic properties of a commonly used blue dye could revolutionise computer processing power, according to research published recently in Advanced Materials.

Scientists have demonstrated that they can control the properties in a dye known as Metal Phthalocyanine, or MPc, with the use of magnetism.

Though this technology is still in its infancy, researchers claim that the ability to control the magnetic properties of MPc could have the potential to dramatically improve information processing in the future.

iPods, CD read/writers, and other electronic devices already use magnetism as a system for signalling to process and store information.

Current technology, however, has limitations. According to Moore’s Law - a theory for describing the historical trend of computer hardware development – computer technology will eventually reach a ‘dead end’ as options for shrinking the size and increasing memory run out.

Dr Sandrine Heutz, from Imperial College London’s Department of Materials, and scientists from the London Centre for Nanotechnology, believe results from recent experiments with MPc could provide the answer.

MPc contains carbon, nitrogen and hydrogen and can also contain a wide range of atoms at its centre. In their work they used either a copper or manganese metal atom at its centre. Scientists first observed MPc in 1907 and it has been used ever since as a dye in textiles and paper and has even been investigated for use as an anti-cancer agent.

Dr Heutz made a scientific breakthrough when she experimented with clusters of MPc. She found that she could make the metal centres of MPc have tiny magnetic interactions with one another. Like placing two compasses together and controlling which way the arrows point, she found that she could control how the metal centres of MPc spin in relation to one another.

The secret to controlling this spin lies in the way Dr Heutz experimented with MPc. She grew stacks of MPc in crystal structures on plastic surfaces and then experimented with the preparation conditions. She grew them at room temperature; applied heat; chemically altered the plastic surfaces that the crystals grew on; and changed the way the crystals grew. All these different elements altered the way the metal centres interacted with each other.

After three years of experimentation, the team can now control a set of microscopic interactions between the molecules.

Current information processing uses a switching process of zeros and ones to process and store ‘bits’ of information. Dr Heutz believes she could improve on this process to increase memory. So far the team can switch the interactions from ‘on/off’ and change the state of the interaction from ‘on’ to a different type of ‘on’. They are still experimenting with ways to turn the interaction ‘off/on’. When they find this last interaction Dr Heutz believes she will have a superior set of molecular signals for information processing and storage.

“Electronic devices already use magnetism as a system for processing and storing information. These experiments prove that we will be able to replace the current electro-magnetic process with a magnetic interaction between molecules of MPc,” said Dr Heutz.

Dr Heutz says it could take a further five years to practically apply this technology. When the refinements are complete she believes exploiting MPc molecules will have enormous benefits in the development of ‘spintronics’ - a process which relies on the spin of atoms or molecules to store trillions of bits of information per square inch.

She also believes these molecular interactions have the potential to process ‘qubits’ of information in quantum computing. According to current theories, quantum computing is expected to harness the properties of quantum mechanics to perform tasks that classical computers cannot do in a reasonable time.

“We are still a long way off from applying this technology to the home PC. However, in five years time our experiments will demonstrate that we will have the power to unleash the vast potential of information processing at the molecular level,” she said.

Source: Imperial College London

Explore further: A virtual solution for sharing water treatment innovations

Related Stories

A virtual solution for sharing water treatment innovations

February 5, 2015

Academics and businesses involved in water treatment technology have the opportunity to foster partnerships through a new online platform. Developed by the groundbreaking EU-funded FP4BATIW project, the platform acts as a ...

Improving software for asteroid detection

December 4, 2012

(—Alon Efrat and Jonathan Myers of the UA computer science department are working under a new grant to help improve methods for discovering asteroids on paths toward Earth.

Explained: Near-miss asteroids (w/ Video)

June 29, 2012

On May 29, an asteroid the size of a bus came whizzing past Earth at 10 times the speed of a fired bullet. The near-miss asteroid, named 2012 KT42 — or “KT42” for short — streaked across the orbits of ...

Turning Sensation into Perception

November 6, 2005

Perceiving a simple touch may depend as much on memory, attention, and expectation as on the stimulus itself, according to new research from Howard Hughes Medical Institute (HHMI) international research scholar Ranulfo Romo ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Scientists produce status check on quantum teleportation

September 30, 2015

Mention the word 'teleportation' and for many people it conjures up "Beam me up, Scottie" images of Captain James T Kirk. But in the last two decades quantum teleportation – transferring the quantum structure of an object ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (3) Nov 28, 2007
Thomas Netzel a former President of the American Chemical Society wrote a technical review of Vulvox's DNA transistor concept, and stated that it will likely change the world in innumerable ways when three dimensional chips containing millions of times as many transistors as those in current chips show up in robots and speech translators that really understand English. They will be constructed from DNA and modified DNA made on solid phase synthesizers or by Vulvox's proprietary DNA synthesis process. Vulvox has been a leader in this field. go to and click the nanoelectronics link
2 / 5 (2) Nov 29, 2007
Yeah, right. I have some swampland in Florida I'd like to see you too.
not rated yet Nov 29, 2007
Neil: What does that have to do with the article?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.