Video shows buckyballs form by 'shrink wrapping'

October 26, 2007

The birth secret of buckyballs -- hollow spheres of carbon no wider than a strand of DNA -- has been caught on tape by researchers at Sandia National Laboratory and Rice University. An electron microscope video and computer simulations show that "shrink-wrapping" is the key; buckyballs start life as distorted, unstable sheets of graphite, shedding loosely connected threads and chains until only the perfectly spherical buckyballs remain.

The research is available online and slated to appear in an upcoming issue of Physical Review Letters.

Buckyballs were discovered at Rice in 1985, but understanding the intimate details their formation has vexed scientists. Buckyballs form at high temperatures, and one long-standing theory of their genesis is the "hot giant" hypothesis, which suggests that the carbon atoms first assemble by the thousands in flat graphite sheets. Heat distorts the sheets, "shrink wrapping" them into ever-smaller shapes, and buckyballs survive thanks to their perfect symmetry.

"This 'hot evolution' is so rapid that it was nearly impossible to prove or disprove it by experimental observation," said study co-author Boris Yakobson, professor of mechanical engineering and materials science at Rice. "Sandia's Jianyu Huang solved this problem by creating an ingenious, controllable heat bath inside a 10-nanometer-wide nanotube. That allowed him to capture video of giant fullerenes gradually shrinking."

Huang, who performed the experiments while at Boston College and analyzed the data at Sandia, said the results constitute the first experimental evidence for the 'shrink-wrapping' and 'hot-giant' fullerene birth mechanisms.

Huang captured the high-resolution images using a transmission electron microscope (TEM). The video shows a large fullerene, with an estimated 2,000 atoms of carbon gradually shrinking. It confirmed predictions about the atomic mechanisms that Yakobson's team at Rice had made based on detailed computer simulations.

"If heat is sustained, as it was when we took these images, the fullerenes undergo a further shrinking and vanish," Huang said. "This confirms an aspect of 'shrink wrapping' theory that was predicted by Rice's Rick Smalley and Bob Curl made shortly after they discovered fullerenes."

Huang and Yakobson said it may be possible to exploit the findings to control the fullerene formation process and tailor fullerenes for a variety of applications.

Video available at: www.youtube.com/watch?v=NSNlE8AreeM

Source: Rice University

Related Stories

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.