Taming tiny, unruly waves for nano optics

October 8, 2007
Taming tiny, unruly waves for nano optics
Waves of electromagnetic energy passing through a vacuum between two plates of silicon carbide just 100 nanometers apart, one at an elevated temperature. The lines represent the energy stream, bending the light as it is pushed through the small gap. Credit: Georgia Institute of Technology

Nanoscale devices present a unique challenge to any optical technology -- there’s just not enough room for light to travel in a straight line.

On the nanoscale, energy may be produced by radiating photons of light between two surfaces very close together (sometimes as close as 10 nanometers), smaller than the wavelength of the light. Light behaves much differently on the nanoscale as its wavelength is interrupted, producing unstable waves called evanescent waves. The direction of these unpredictable waves can’t be calculated, so researchers face the daunting task of designing nanotechnologies to work with the tiny, yet potentially useful waves of light.

Researchers at Georgia Tech have discovered a way to predict the behavior of these unruly waves of light during nanoscale radiation heat transfer, opening the door to the design of a spectrum of new nanodevices (or NEMS) and nanotechnologies, including solar thermal energy technologies. Their findings were featured on the cover of the Oct. 8 issue of Applied Physics Letters.

“This discovery gives us the fundamental information to determine things like how far apart plates should be and what size they should be when designing a technology that uses nanoscale radiation heat transfer,” said Zhuomin Zhang, a lead researcher on the project and a professor in the Woodruff School of Mechanical Engineering. “Understanding the behavior of light at this scale is the key to designing technologies to take advantage of the unique capabilities of this phenomenon.”

The Georgia Tech research team set out to study evanescent waves in nanoscale radiation energy transfer (between two very close surfaces at different temperatures by means of thermal radiation). Because the direction of evanescent waves is seemingly unknowable (an imaginary value) in physics terms, Zhang’s group instead decided to follow the direction of the electromagnetic energy flow (also known as a Poynting vector) to predict behavior rather than the direction of the photons.

“We’re using classic electrodynamics to explain the behavior of the waves, not quantum mechanics,” Zhang said. “We’re predicting the energy propagation -- and not the actual movement -- of the photons.”

The challenge is that electrodynamics work differently on the nanoscale and the Georgia Tech team would need to pinpoint those differences. Planck’s law, a more than 100-year-old theory about how electromagnetic waves radiate, does not apply on the nanoscale due to fact that the space between surfaces is smaller than a wavelength.

The Georgia Tech team observed that instead of normal straight line radiation, the light was bending as protons tunneled through the vacuum in between the two surfaces just nanometers apart. The team also noticed that the evanescent waves were separating during this thermal process, allowing them to visualize and predict the energy path of the waves.

Understanding the behavior of such waves is critical to the design of many devices that use nanotechnology, including near-field thermophotovoltaic systems, nanoscale imaging based on thermal radiation scanning tunneling microscopy and scanning photon-tunneling microscopy, said Zhang.

Source: Georgia Institute of Technology

Explore further: The houseplant with a blueprint for improving energy harvesting

Related Stories

Metamaterial uses light to control its motion

October 10, 2016

Researchers have designed a device that uses light to manipulate its mechanical properties. The device, which was fabricated using a plasmomechanical metamaterial, operates through a unique mechanism that couples its optical ...

Transformational X-ray project takes a step forward

October 3, 2016

The U.S. Department of Energy (DOE) has confirmed the need for a unique source of X-ray light that would produce beams up to 1,000 times brighter than are now possible at Lawrence Berkeley National Laboratory's (Berkeley ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.