Supernovae not what they used to be

Oct 05, 2007

Exploding stars that light the way for research on dark energy aren’t as powerful or bright, on average, as they once were, says a new study by University of Toronto astronomers.

The study, which compared supernovae in nearby galaxies with those that exploded up to nine billion light years away in the distant universe, found the distant supernovae were an average of 12 per cent brighter. The distant supernovae were brighter because they were younger, the study found.

Since uniformly bright exploding stars help astronomers study the nature of dark energy – an unknown type of energy that causes the universe to accelerate its expansion – the team’s findings suggest it could become more difficult to study dark energy in the future. Astronomers can correct for supernovae of varying brightness, but it will prove challenging.

“The findings do not call into question that the universe is accelerating but the evolving mix of supernovae could limit future attempts to determine the nature of dark energy,” said Andrew Howell, lead author of the study and post-doctoral researcher. The paper appears in the Sept. 20 issue of the Astrophysical Journal Letters.

“You can think of supernovae as light bulbs,” he said. “We found that the early universe supernovae had a higher wattage, but as long as we can figure out the wattage, we should be able to correct for that. Learning more about dark energy is going to take very precise corrections though and we aren’t sure how well we can do that yet.”

The paper, Predicted and Observed Evolution in the Mean Properties of Type Ia Supernovae with Redshift, was co-authored by post-doctoral researchers Mark Sullivan and Alex Conley and Professor Ray Carlberg of astronomy and astrophysics.

Source: University of Toronto

Explore further: What was here before the solar system?

Related Stories

Supernova ignition surprises scientists

May 20, 2015

Scientists have captured the early death throes of supernovae for the first time and found that the universe's benchmark explosions are much more varied than expected.

What shape is the universe?

May 12, 2015

The universe. It's the only home we've ever known. Thanks to its intrinsic physical laws, the known constants of nature, and the heavy-metal-spewing fireballs known as supernovae we are little tiny beings ...

Brian Schmidt discusses the fast-firing universe

Apr 28, 2015

In 1998, a team led by a former Harvard graduate student shocked the astrophysics world by publishing results that said the expansion of the universe, believed to be gradually slowing, was instead accelerating.

Accelerating universe? Not so fast

Apr 10, 2015

A University of Arizona-led team of astronomers found that the type of supernovae commonly used to measure distances in the universe fall into distinct populations not recognized before; the findings have ...

Recommended for you

What was here before the solar system?

2 hours ago

The solar system is old. Like, dial-up-fax-machine-old. 4.6 billion years to be specific. The solar system has nothing on the universe. It's been around for 13.8 billion years, give or take a few hundred ...

Herschel's hunt for filaments in the Milky Way

3 hours ago

Observations with ESA's Herschel space observatory have revealed that our Galaxy is threaded with filamentary structures on every length scale. From nearby clouds hosting tangles of filaments a few light-years ...

Sharp-eyed Alma spots a flare on famous red giant star

4 hours ago

Super-sharp observations with the telescope Alma have revealed what seems to be a gigantic flare on the surface of Mira, one of the closest and most famous red giant stars in the sky. Activity like this in ...

NASA telescopes set limits on space-time quantum 'foam'

May 28, 2015

A team of scientists has used X-ray and gamma-ray observations of some of the most distant objects in the universe to better understand the nature of space and time. Their results set limits on the quantum ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

seanpu
1.5 / 5 (2) Oct 08, 2007
they are said to be "12 per cent brighter" because of the assumption that red-shift = distance. take away the assumption and their brightness levels will fall to within "expected" values.
LearmSceince
4 / 5 (2) Oct 12, 2007
That doesn't make sense. If you take away that assumption, then you can't make any predictions so there are no "expected" values to fall within.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.