Supernovae not what they used to be

October 5, 2007

Exploding stars that light the way for research on dark energy aren’t as powerful or bright, on average, as they once were, says a new study by University of Toronto astronomers.

The study, which compared supernovae in nearby galaxies with those that exploded up to nine billion light years away in the distant universe, found the distant supernovae were an average of 12 per cent brighter. The distant supernovae were brighter because they were younger, the study found.

Since uniformly bright exploding stars help astronomers study the nature of dark energy – an unknown type of energy that causes the universe to accelerate its expansion – the team’s findings suggest it could become more difficult to study dark energy in the future. Astronomers can correct for supernovae of varying brightness, but it will prove challenging.

“The findings do not call into question that the universe is accelerating but the evolving mix of supernovae could limit future attempts to determine the nature of dark energy,” said Andrew Howell, lead author of the study and post-doctoral researcher. The paper appears in the Sept. 20 issue of the Astrophysical Journal Letters.

“You can think of supernovae as light bulbs,” he said. “We found that the early universe supernovae had a higher wattage, but as long as we can figure out the wattage, we should be able to correct for that. Learning more about dark energy is going to take very precise corrections though and we aren’t sure how well we can do that yet.”

The paper, Predicted and Observed Evolution in the Mean Properties of Type Ia Supernovae with Redshift, was co-authored by post-doctoral researchers Mark Sullivan and Alex Conley and Professor Ray Carlberg of astronomy and astrophysics.

Source: University of Toronto

Explore further: Cosmology looks beyond the standard model

Related Stories

Cosmology looks beyond the standard model

July 8, 2015

What are the mysterious dark matter and dark energy that seem to account for so much of our Universe? Why is the Universe expanding? For the past 30 years, most cosmologists have looked to the 'standard model' to answer ...

Searing sun seen in X-rays

July 8, 2015

X-rays light up the surface of our sun in a bouquet of colours in this new image containing data from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR. The high-energy X-rays seen by NuSTAR are shown in blue, while ...

Galaxy survey to probe why the universe is accelerating

June 30, 2015

We know that our universe is expanding at an accelerating rate, but what causes this growth remains a mystery. The most likely explanation is that a strange force dubbed "dark energy" is driving it. Now a new astronomical ...

Is the universe ringing like a crystal glass?

June 26, 2015

Many know the phrase "the big bang theory." There's even a top television comedy series with that as its title. According to scientists, the universe began with the "big bang" and expanded to the size it is today. Yet, the ...

Recommended for you

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

First detection of lithium from an exploding star

July 29, 2015

The chemical element lithium has been found for the first time in material ejected by a nova. Observations of Nova Centauri 2013 made using telescopes at ESO's La Silla Observatory, and near Santiago in Chile, help to explain ...

New names and insights at Ceres

July 29, 2015

Colorful new maps of Ceres, based on data from NASA's Dawn spacecraft, showcase a diverse topography, with height differences between crater bottoms and mountain peaks as great as 9 miles (15 kilometers).

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

seanpu
1.5 / 5 (2) Oct 08, 2007
they are said to be "12 per cent brighter" because of the assumption that red-shift = distance. take away the assumption and their brightness levels will fall to within "expected" values.
LearmSceince
4 / 5 (2) Oct 12, 2007
That doesn't make sense. If you take away that assumption, then you can't make any predictions so there are no "expected" values to fall within.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.