New research sheds light on shimmering superconductivity and the courtship of electrons

October 4, 2007
New research sheds light on shimmering superconductivity and the courtship of electrons
The arrangement of molecules inside the molecular superconductor used by Oxford University scientists in their experiments. Credit: Stephen Blundell.

In their normal state, electrons repel each other because of their charge, but in the state of superconductivity, electrons pair up. John Schlueter, a chemist from the U.S. Department of Energy's Argonne National Laboratory, collaborated with a team of researchers from the University of Oxford to better understand how this unlikely courtship occurs.

Their recent research appears in the October 4 issue of Nature and finds that a form of shimmering superconductivity exists at temperatures well above that at which ordinary superconductivity is destroyed. This electron courtship is characterized by a tension between the conflicting urges for electrons to pair up (which leads to superconductivity) and to repel each other (which leads to insulating behavior).

Superconductors conduct electricity with absolutely no resistance when cooled below a certain critical temperature, Tc. “Superconductivity already has important applications and many more uses are possible if critical temperatures are high enough,” Schlueter explained.

Much research over the past decade has focused on inorganic cuprate superconductors. Although molecular superconductors currently have maximum Tcs near 10 K (nearly an order of magnitude lower than the cuprates), they have many features that make them ideal for the study of the fundamental properties of superconductivity. In the organic materials, lower temperatures and magnetic fields are required to reach the boundaries between superconducting and normal states, thus making these experiments much easer to perform in a laboratory.

Although such shimmering superconductivity above the usual temperature barrier has previously been observed in cuprate materials, this is the first time it has been seen in an extremely clean and well controlled system that doesn't have to be chemically doped to produce superconductivity. This means that scientists can be sure that the effect is not associated with impurities. In fact, the team believes that such an effect should be found in all superconductors in which conflicting interactions are finely balanced. This is an important step forward in the quest to understand superconductivity in what are known as "highly correlated" materials: the superconductors of the future.

The Argonne group has long been recognized as an international leader in the discovery and crystallization of high quality crystals of molecular superconductors. “We use an electrocrystallization technique both as a discovery tool and a means to enable sophisticated measurements aimed at unraveling some of the outstanding mysteries of superconductivity,” Schlueter explained. This research was performed on a superconducting material discovered by the Argonne group in 1990, addresses a longstanding question relating to the pairing of electrons in superconducting materials. The study identifies similarities between the high and low temperature superconductors.

The discovery was made by Moon-Sun Nam in collaboration with Arzhang Ardavan and Stephen Blundell in Oxford University's Department of Physics, using crystals grown by John Schlueter. The team exploited a particularly sensitive probe of superconducting fluctuations called the "vortex-Nernst effect". This effect provides a way of detecting that superconducting vortices are present, even when zero electrical resistance (the characteristic of traditional superconductivity) is not exhibited.

Source: Argonne National Laboratory

Explore further: Superconductivity trained to promote magnetization

Related Stories

Superconductivity trained to promote magnetization

October 6, 2015

Under certain conditions, superconductivity, which is basically incompatible with magnetism, can promote magnetization. Russian scientist Natalya Pugach from the Skobeltsyn Institute of Nuclear Physics at the Lomonosov Moscow ...

A necklace of fractional vortices

October 2, 2015

Researchers at Chalmers University of Technology have arrived at how what is known as time-reversal symmetry can break in one class of superconducting material. The results have been published in the highly ranked Nature ...

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

ITER superconductor production nears completion

September 17, 2015

The single largest superconductor procurement in industrial history is drawing to a successful close. An eight-year campaign to produce the superconductors for ITER's powerful magnet systems is in its final stages, with nearly ...

One step closer to a new kind of computer

September 16, 2015

An international group of physicists, including Aleksandr Golubov, head of the MIPT Laboratory of Topological Quantum Phenomena in Superconductor Systems, recently presented results of experiments testing a new phenomenon ...

Recommended for you

Light-optics research could improve medical imaging

October 13, 2015

A team of researchers, including The University of Queensland's Dr Joel Carpenter, has developed echo-less lights that could improve medical imaging inside the body, leading to less-intrusive surgery.

Just a touch of skyrmions

October 13, 2015

Ancient memory devices such as handwriting were based on mechanical energy—but in the modern world they have given way to devices based generally on electrical manipulation.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.