Scientists to explore nano advancements in DNA sequencing

October 1, 2007

UC Irvine’s Henry Samueli School of Engineering has been awarded $2.18 million to blend traditional DNA sequencing techniques with cutting-edge nanotechnology to develop a faster and less costly method of analysis. The goal is to make DNA sequencing feasible as a routine part of health care.

If implemented, widespread DNA analysis could provide doctors with more resources to predict disease, prevent potential illness and better customize prescription medication to complement patients’ specific health and treatment needs.

UC Irvine’s three-year grant was awarded as part of a $15 million initiative by the National Human Genome Research Institute (NHGRI) to support the development of innovative technologies with the potential to drastically reduce the cost of DNA sequencing.

The institute, part of the National Institutes of Health (NIH), announced grants for eight researchers to develop genome sequencing technologies that could produce a total genetic composition of an individual for $1,000. UC Irvine received the second largest of these grants.

Three additional researchers were funded to work on nearer-term technologies that could sequence a genome for $100,000. Currently, it costs about $5 million to sequence DNA for humans and other mammals – by painstakingly analyzing the 3 billion base pairs that comprise the building blocks of DNA. The process can take months to complete.

“If we could make DNA sequencing and testing available for all patients during medical exams by taking a simple blood test, we could directly impact the future of health care and create opportunities to improve a patient’s quality of life,” said H. Kumar Wickramasinghe, professor of electrical engineering and computer science and the Henry Samueli endowed chair, who is leading this research at UC Irvine.

Wickramasinghe will work with Robert K. Moyzis, a professor in UC Irvine’s Department of Biological Chemistry and human genomics coordinator for the Institute for Genomics and Bioinformatics, to integrate nanotechnology with a Nobel Prize-winning DNA sequencing method developed in 1975 by Frederick Sanger.

The process will employ a novel DNA separation method using the atomic force microscope (AFM), a Wickramasinghe invention. Researchers will then decode the DNA sequence with the help of light concentrated at a probe that is about 50 atoms wide at its tip.

It will take substantially less time to sort, analyze and then map DNA using this technique, since the procedure operates on a much smaller scale than the conventional Sanger method.

This new process has the capability to produce accurate results that are both 10,000 times faster and less expensive to obtain, since many of the expenses related to current methods of sequencing DNA are tied to the time it takes and the large amount of chemicals used.

“Applying nanotechnology techniques to fundamental DNA sequencing methods allows nano pioneers like Professor Wickramasinghe the platform to contribute new advances that will directly affect the well-being and health of society,” said Nicolaos G. Alexopoulos, dean of The Henry Samueli School of Engineering. “The school is excited to participate in this effort that will help advance the medical field and aid health care professionals in proactively diagnosing and better treating their patients.”

Source: University of California - Irvine

Explore further: Gene drive reversibility introduces new layer of biosafety

Related Stories

Gene drive reversibility introduces new layer of biosafety

November 16, 2015

In parallel with their development of the first synthetic gene drives - which greatly increase the chance a specific gene will be passed on to all offspring - George Church, Ph.D., and Kevin Esvelt, Ph.D., helped pioneer ...

How clean is the International Space Station?

October 26, 2015

State-of-the-art molecular analysis of dust samples from the International Space Station (ISS) has been employed to reveal new information about some of the potential bacterial agents present in the astronauts' space environment. ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.