New Quantum Dot Transistor Counts Individual Photons

October 11, 2007
New Quantum Dot Transistor Counts Individual Photons
NIST´s modified field-effect transistor can count single photons, or particles of light. When light enters through the transmission window (see electron micrograph of top of device), it penetrates the gallium arsenide absorbing layer and separates electrons from the holes they formerly occupied. Quantum dots (red dots) trap the positively charged holes, while electrons flow into the channel (green Xs). By measuring the channel current, researchers can determine the number of photons absorbed. Credit: NIST

A transistor containing quantum dots that can count individual photons (the smallest particles of light) has been designed and demonstrated at the National Institute of Standards and Technology.

The semiconductor device could be integrated easily into electronics and may be able to operate at higher temperatures than other single-photon detectors—practical advantages for applications such as quantum key distribution (QKD) for “unbreakable” encryption using single photons.

The NIST device, described in a new paper, can accurately count 1, 2 or 3 photons at least 83 percent of the time. It is the first transistor-based detector to count numbers of photons; most other types of single-photon detectors simply “click” in response to any small number of photons.

Counting requires a linear, stepwise response and low-noise operation. This capability is essential for advanced forms of precision optical metrology—a focus at NIST—and could be used both to detect photons and to evaluate single-photon sources for QKD. The new device also has the potential to be cooled electronically, at much higher temperatures than typical cryogenic photon detectors.

Dubbed QDOGFET, the new detector contains about 1,000 quantum dots, nanoscale clusters of semiconductors with unusual electronic properties. The NIST dots are custom-made to have the lowest energy of any component in the detector, like the bottom of a drain. A voltage applied to the transistor produces an internal current, or channel. Photons enter the device and their energy is transferred to electrons in a semiconductor “absorbing layer,” separating the electrons from the “holes” they formerly occupied.

As each photon is absorbed, a positively charged hole is trapped by the quantum dot drain, while the corresponding electron is swept into the channel. The amount of current flowing in the channel depends on the number of holes trapped by quantum dots. By measuring the channel response, scientists can count the detected photons. NIST measurements show that, on average, each trapped hole boosts the channel current by about one-fifth of a nanoampere. The detector has an internal quantum efficiency (percentage of absorbed photons that result in trapped holes) of 68 ± 18 percent, a record high for this type of photon detector.

The QDOGFET currently detects single photons at wavelengths of about 800 nanometers. By using different semiconductor materials, NIST researchers hope to make detectors that respond to the longer near-infrared wavelengths used in telecommunications. In addition, researchers hope to boost the external quantum efficiency (percentage of photons hitting the detector that are actually detected), now below 10 percent, and operate the device at faster speeds.

The research is supported in part by the Disruptive Technology Office. The authors include one from Los Alamos National Laboratory and one from Heriot-Watt University, Edinburgh, UK.

Citation: E.J. Gansen, M.A. Rowe, M.B. Greene, D. Rosenberg, T.E. Harvey, M.Y. Su, R.H. Hadfield, S.W. Nam and R.P. Mirin. Photon-number-discriminating detection using a quantum dot, optically gated, field-effect transistor. Nature Photonics. 1, 585 - 588 (2007). Published on-line Oct. 1, 2007.

Source: NIST

Explore further: A way has been found to interconnect quantum devices including preserving entanglement

Related Stories

Twin paradox on a chip

August 19, 2015

Per Delsing and his team want to combine theoretical calculations with experiments on superconducting circuits to gain an understanding of how things fit together at the nano level. Among other things, they plan to simulate ...

Surprising discoveries about 2-D molybdenum disulfide

August 14, 2015

Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have used a unique nano-optical probe to study the effects of illumination on two-dimensional semiconductors at the ...

Measuring the smallest vibration

August 11, 2015

EPFL scientists have used feedback to cool the motion of a micron-sized glass string to near absolute zero. This required building a sensor capable of resolving the smallest vibration allowed by quantum mechanics.

Recommended for you

Seeing quantum motion

August 28, 2015

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.