Platinum-rich shell, platinum-poor core

October 23, 2007

Hydrogen fuel cells will power the automobiles of the future; however, they have so far suffered from being insufficiently competitive. At the University of Houston, Texas, USA, a team led by Peter Strasser has now developed a new class of electrocatalyst that could help to improve the capacity of fuel cells. The active phase of the catalyst consists of nanoparticles with a platinum-rich shell and a core made of an alloy of copper, cobalt, and platinum. This catalyst demonstrates the highest activity yet observed for the reduction of oxygen.

Hydrogen fuel cells are a tamed version of the explosive reaction that occurs between oxygen and hydrogen gases to form water. To allow the reaction to proceed gently and the energy released to be tapped in the form of an electrical current, the reactants are separated within the fuel cell, and each half-reaction occurs in its own chamber. In one half-cell, oxygen takes up electrons from an electrode (reduction); in the other, hydrogen gas gives up electrons (oxidation). The cells are linked by a polymer electrolyte membrane, across which exchange occurs.

To get the reaction to proceed, the electrodes must be catalytic. For decades, the material of choice for the electrode in the oxygen half-reaction has been the precious metal platinum. Now, Strasser and his team have developed a new material, an alloy of platinum, copper, and cobalt that is deposited onto carbon supports in the form of nanoparticles. The active catalytic phase is formed in situ: when a cyclic alternating current is applied to the electrode, the less precious metals, especially the copper, on the surface of the nanoparticles separate from the alloy. This process results in nanoparticles with a core made of the original copper-rich alloy and a shell containing almost exclusively platinum.

“The oxygen-reducing activity of our new electrocatalytic material is unsurpassed—it is four to five times higher than that of pure platinum. In addition, we have demonstrated how to incorporate and activate this material in situ in a fuel cell,” says Strasser.

The observed increase in surface area of the nanoparticles is not enough to explain the increased activity. Strasser suspects that special altered structural characteristics of the surface play a role. Although the surface consists mostly of platinum, the distances between the platinum atoms on the particle surface seem to be shorter than those in pure platinum. This compression can be stabilized by the alloy core, which shows even shorter Pt-Pt distances because of the presence of copper and cobalt.

In addition, the copper-rich core seems to influence the electronic properties of the platinum shell. Theoretical calculations have suggested that the oxygen can thus bind optimally to the particle surface, allowing it to be more easily reduced.

Citation: Peter Strasser, Efficient Oxygen Reduction Fuel Cell Electrocatalysis on Voltammetrically Dealloyed Pt-Cu-Co Nanoparticles, Angewandte Chemie International Edition, doi: 10.1002/anie.200703331

Source: John Wiley & Sons

Explore further: Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes

Related Stories

A most singular nano-imaging technique (Update)

July 16, 2015

Just as proteins are one of the basic building blocks of biology, nanoparticles can serve as the basic building blocks for next generation materials. In keeping with this parallel between biology and nanotechnology, a proven ...

New catalyst does more with less platinum

July 6, 2015

Platinum is a highly reactive and in-demand catalyst across the chemical and energy industries, but a team of University of Wisconsin-Madison and Georgia Institute of Technology scientists could reduce the world's dependence ...

'Nano-raspberries' could bear fruit in fuel cells

June 9, 2015

Researchers at the National Institute of Standards and Technology have developed a fast, simple process for making platinum 'nano-raspberries'—microscopic clusters of nanoscale particles of the precious metal. The berry-like ...

Scientists develop cheaper, more efficient fuel cells

May 23, 2013

(Phys.org) —Using the Canadian Light Source (CLS) synchrotron, researchers have discovered a way to create cheaper fuel cells by dividing normally expensive platinum metal into nanoparticles (or even single atoms) for use ...

Recommended for you

Fast times and hot spots in plasmonic nanostructures

August 4, 2015

The ability to control the time-resolved optical responses of hybrid plasmonic nanostructures was demonstrated by a team led by scientists in the Nanophotonics Group at the Center for Nanoscale Materials including collaborators ...

Study explores nanoscale structure of thin films

August 4, 2015

The world's newest and brightest synchrotron light source—the National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory—has produced one of the first publications ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.