Platinum-rich shell, platinum-poor core

Oct 23, 2007

Hydrogen fuel cells will power the automobiles of the future; however, they have so far suffered from being insufficiently competitive. At the University of Houston, Texas, USA, a team led by Peter Strasser has now developed a new class of electrocatalyst that could help to improve the capacity of fuel cells. The active phase of the catalyst consists of nanoparticles with a platinum-rich shell and a core made of an alloy of copper, cobalt, and platinum. This catalyst demonstrates the highest activity yet observed for the reduction of oxygen.

Hydrogen fuel cells are a tamed version of the explosive reaction that occurs between oxygen and hydrogen gases to form water. To allow the reaction to proceed gently and the energy released to be tapped in the form of an electrical current, the reactants are separated within the fuel cell, and each half-reaction occurs in its own chamber. In one half-cell, oxygen takes up electrons from an electrode (reduction); in the other, hydrogen gas gives up electrons (oxidation). The cells are linked by a polymer electrolyte membrane, across which exchange occurs.

To get the reaction to proceed, the electrodes must be catalytic. For decades, the material of choice for the electrode in the oxygen half-reaction has been the precious metal platinum. Now, Strasser and his team have developed a new material, an alloy of platinum, copper, and cobalt that is deposited onto carbon supports in the form of nanoparticles. The active catalytic phase is formed in situ: when a cyclic alternating current is applied to the electrode, the less precious metals, especially the copper, on the surface of the nanoparticles separate from the alloy. This process results in nanoparticles with a core made of the original copper-rich alloy and a shell containing almost exclusively platinum.

“The oxygen-reducing activity of our new electrocatalytic material is unsurpassed—it is four to five times higher than that of pure platinum. In addition, we have demonstrated how to incorporate and activate this material in situ in a fuel cell,” says Strasser.

The observed increase in surface area of the nanoparticles is not enough to explain the increased activity. Strasser suspects that special altered structural characteristics of the surface play a role. Although the surface consists mostly of platinum, the distances between the platinum atoms on the particle surface seem to be shorter than those in pure platinum. This compression can be stabilized by the alloy core, which shows even shorter Pt-Pt distances because of the presence of copper and cobalt.

In addition, the copper-rich core seems to influence the electronic properties of the platinum shell. Theoretical calculations have suggested that the oxygen can thus bind optimally to the particle surface, allowing it to be more easily reduced.

Citation: Peter Strasser, Efficient Oxygen Reduction Fuel Cell Electrocatalysis on Voltammetrically Dealloyed Pt-Cu-Co Nanoparticles, Angewandte Chemie International Edition, doi: 10.1002/anie.200703331

Source: John Wiley & Sons

Explore further: Project uses crowd computing to improve water filtration

Related Stories

'Nano-raspberries' could bear fruit in fuel cells

Jun 09, 2015

Researchers at the National Institute of Standards and Technology have developed a fast, simple process for making platinum 'nano-raspberries'—microscopic clusters of nanoscale particles of the precious ...

Micromotors for energy generation

Apr 28, 2015

Hydrogen is considered to be the energy source of the future: the first vehicles powered by hydrogen fuel cells are already on the market. However, the problem of hydrogen storage has not been solved in a ...

Multimetal nanoframes improve catalyst performance

Apr 14, 2015

A team of researchers has synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of solid Pt-Ni bimetallic nanocrystals into porous cage-like structures or ...

Recommended for you

Project uses crowd computing to improve water filtration

2 hours ago

Nearly 800 million people worldwide don't have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. ...

Engineering the world's smallest nanocrystal

6 hours ago

In the natural world, proteins use the process of biomineralization to incorporate metallic elements into tissues, using it to create diverse materials such as seashells, teeth, and bones. However, the way ...

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.