New method of selecting DNA for resequencing accelerates discovery of subtle DNA variations

October 14, 2007

A new technology developed by scientists at Emory University will allow researchers to more easily discover subtle and overlooked genetic variations that may have serious consequences for health and disease. Called Microarray-based Genomic Selection (MGS), the research protocol allows scientists to extract and enrich specific large-sized DNA regions, then compare genetic variation among individuals using DNA resequencing methods.

The technology reported will be published online on Oct. 14 and will appear in the November print issue of the journal Nature Methods.

Lead author is David Okou, PhD, postdoctoral fellow in the laboratory of Michael Zwick, PhD, assistant professor of human genetics at Emory University School of Medicine.

The goal of most human genetics researchers is to find variations in the genome that contribute to disease. Despite the success of the human genome project and the availability of a number of next-generation DNA sequencing platforms, however, the lack of a simple, inexpensive method of selecting specific regions to resequence has been a serious barrier to detecting subtle genetic variability among individuals. The Emory scientists believe that goal will be much more obtainable thanks to MGS.

MGS uses DNA oligonucleotides (probes) arrayed on a chip at high density (microarray) to directly capture and extract the target region(s) from the genome. The probes are chosen from the reference human genome and are complementary to the target(s) to capture. Once the target is selected, resequencing arrays or other sequencing technologies can be used to identify variations. The Emory scientists believe MGS will allow them to easily compare genetic variation among a number of individuals and relate that variation to health and disease.

"The human genome project focused on sequencing just one human genome--an amazing technological feat that required a very large industrial infrastructure, hundreds of people and a great deal of money," says Dr. Zwick. "The question since then has been, can we replicate the ability to resequence parts of the genome, or ultimately the entire genome, in a laboratory with a single investigator and a small staff? The answer is now 'yes.'"

Geneticists have found many different types of obvious gene mutations that are deleterious to health, explains Dr. Zwick, but more subtle variations, or variations located in parts of the genome where scientists rarely look, may also have negative consequences but are not so easily discovered.

Other methods for isolating and studying a particular region of the genome, such as PCR and BAC cloning (bacterial artificial chromosomes) are comparatively labor intensive, difficult for single laboratories to scale to large sections of the genome, and relatively expensive, says Dr. Zwick.

Whereas typical microarray technology measures gene expression, MGS is a novel use of microarrays for capturing specific genomic sequences. For the published study, a third type of microarray--a resequencing array--was used to determine the DNA sequence in the patient samples.

"The logic behind the resequencing chip is that you design the chip to have the identity of the base at every single site in a reference sequence," says Dr. Zwick. "You use the human genome reference sequence as a shell and you search for variation on the theme. This alternative new technology allows a regular-sized laboratory and single investigator to generate a great deal of data at a cost significantly less than what a sequencing center would charge," Dr. Zwick says.

Source: Emory University

Explore further: Time travel with the molecular clock

Related Stories

Time travel with the molecular clock

November 23, 2015

Migration isn't a new phenomenon, but new insights suggest that modern-day Europeans actually have at least three ancestral populations. This finding was published by Johannes Krause and prominently featured on the cover ...

The corn snake genome sequenced for the first time

November 24, 2015

Among the 5 000 existing species of mammals, more than 100 have their genome sequenced, whereas the genomes of only 9 species of reptiles (among 10 000 species) are available to the scientific community. This is the reason ...

New mechanisms of self-organization in living cells

November 24, 2015

Chromosomes are structures inside cell nuclei that carry a large part of the genetic information and are responsible for its storage, transfer and implementation. Chromosomes are formed from a very long DNA molecule—a double ...

Adapting to -70C in Siberia: A tale of Yakutian horses

November 23, 2015

From an evolutionary perspective it happened almost overnight. In less than 800 years Yakutian horses adapted to the extremely cold temperatures found in the environments of eastern Siberia. The adaptive process involved ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.