Researchers provide new information about mass spectrometry

October 15, 2007

Fresh data on mass spectrometry are presented in the report ‘Low-energy collision-induced fragmentation of negative ions derived from ortho-, meta-, and para-hydroxyphenyl carbaldehydes, ketones, and related compounds,’ produced by Professor Athula Attygalle and his colleagues in the Center for Mass Spectrometry at Stevens Institute of Technology.

According to a study, “Collision-induced dissociation (CID) mass spectra of anions derived from several hydroxyphenyl carbaldehydes and ketones were recorded and mechanistically rationalized. For example, the spectrum of m/z 121 ion of deprotonated ortho-hydroxybenzaldehyde shows an intense peak at m/z 93 for a loss of carbon monoxide attributable to an ortho-effect mediated by a charge-directed heterolytic fragmentation mechanism.”

“In contrast, the m/z 121 ion derived from meta and para isomers undergoes a charge-remote homolytic cleavage to eliminate an *H and form a distonic anion radical, which eventually loses CO to produce a peak at m/z 92. In fact, for the para isomer, this two-step homolytic mechanism is the most dominant fragmentation pathway. The spectrum of the meta isomer on the other hand, shows two predominant peaks at m/z 92 and 93 representing both homolytic and heterolytic fragmentations, respectively. (18)O-isotope-labeling studies confirmed that the oxygen in the CO molecule that is eliminated from the anion of meta-hydroxybenzaldehyde originates from either the aldehydic or the phenolic group. In contrast, anions of ortho-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde, both of which show two consecutive CO eliminations, specifically lose the carbonyl oxygen first, followed by that of the phenolic group. Anions from 2-hydroxyphenyl alkyl ketones lose a ketene by a hydrogen transfer predominantly from the alpha position. Interestingly, a very significant charge-remote 1,4-elimination of a H(2) molecule was observed from the anion derived from 2,4-dihydroxybenzaldehyde,” wrote Attygalle and his colleagues from Stevens.

The researchers concluded: “For this mechanism to operate, a labile hydrogen atom should be available on the hydroxyl group adjacent to the carbaldehyde functionality.”

Attygalle and colleagues published the results of their research in the Journal of Mass Spectrometry (Low-energy collision-induced fragmentation of negative ions derived from ortho-, meta-, and para-hydroxyphenyl carbaldehydes, ketones, and related compounds.

Citation: Journal of Mass Spectrometry, 2007; 42(9):1207-17).

Source: Stevens Institute of Technology

Related Stories

Recommended for you

Microsoft describes hard-to-mimic authentication gesture

August 1, 2015

Photos. Messages. Bank account codes. And so much more—sit on a person's mobile device, and the question is, how to secure them without having to depend on lengthy password codes of letters and numbers. Vendors promoting ...

Netherlands bank customers can get vocal on payments

August 1, 2015

Are some people fed up with remembering and using passwords and PINs to make it though the day? Those who have had enough would prefer to do without them. For mobile tasks that involve banking, though, it is obvious that ...

Model shows how surge in wealth inequality may be reversed

July 30, 2015

(Phys.org)—For many Americans, the single biggest problem facing the country is the growing wealth inequality. Based on income tax data, wealth inequality in the US has steadily increased since the mid-1980s, with the top ...

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.