Researchers link gene to cholesterol

Oct 11, 2007

MIT researchers have discovered a link between a gene believed to promote long lifespan and a pathway that flushes cholesterol from the body.

The finding could help researchers create drugs that lower the risk of diseases associated with high cholesterol, including atherosclerosis (clogged arteries) and Alzheimer's disease.

The study focused on a gene called SIRT1, which the researchers found prevents cholesterol buildup by activating a cellular pathway that expels cholesterol from the body via HDL (high density lipoprotein or “good cholesterol”).

“SIRT1 is an important mediator of cholesterol efflux, and as such it's predicted to play a role in the development of age-associated diseases where cholesterol is a contributing factor,” said Leonard Guarente, MIT professor of biology and senior author of a paper on the work to be published in the Oct. 12 issue of Molecular Cell.

Drugs that enhance the effects of SIRT1 could lower the risk of cholesterol-related diseases, Guarente said. Potential drugs could be based on polyphenols, which are found in red wine and have been shown to enhance SIRT1. However, the quantities naturally found in red wine are not large enough to have a significant impact on cholesterol levels.

In earlier studies, Guarente has shown that high levels of SIRT1 can be achieved with extreme calorie restriction, but that is unappealing for most people.

“If you had a drug that could increase expression of SIRT1, that could replicate the effects of calorie restriction,” Guarente said. “This is not going to replace the need for a healthy lifestyle, but it's a supplement that could potentially make you healthier.”

SIRT1 is the mammalian homologue to SIR2, a gene that has been shown to slow aging in yeast and roundworms. Researchers have been curious to find out whether SIRT1 has similar effects.

In the new MIT study, researchers found that low SIRT1 levels in mice lead to cholesterol buildup in cells such as macrophages, a type of immune cell, due to reduced activity of a protein called LXR (liver X receptor).

LXR is responsible for transporting cholesterol out of macrophage cells. When full of cholesterol, the macrophages can generate plaques that clog arteries. SIRT1 boosts LXR activity, so that cholesterol is expelled from macrophages and out of the body by HDL.

Source: Massachusetts Institute of Technology

Explore further: Team discovers key step in how taste buds regenerate

Related Stories

NSA winds down once-secret phone-records collection program

1 hour ago

The National Security Agency has begun winding down its collection and storage of American phone records after the Senate failed to agree on a path forward to change or extend the once-secret program ahead of its expiration ...

Pipeline that leaked wasn't equipped with auto shut-off

1 hour ago

The pipeline that leaked thousands of gallons of oil on the California coast was the only pipe of its kind in the county not required to have an automatic shut-off valve because of a court fight nearly three ...

Uber drivers fined in Hungary

2 hours ago

The Hungarian tax authority fined Uber drivers in its first probe against the ride-sharing service which the economy ministry said Saturday "ignores passenger safety" and must be made to follow regulations.

Recommended for you

Team discovers key step in how taste buds regenerate

May 28, 2015

Researchers at the University of Colorado Anschutz Medical Campus have discovered a key molecular pathway that aids in the renewal of taste buds, a finding that may help cancer patients suffering from an ...

How mutations in a high risk gene affect motor neurons

May 28, 2015

Scientists at the flagship motor neuron disease research centre, based at the University of Sheffield, investigated how specialised nerve cells that control voluntary movements die – something which is ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.