Inside job: new radioactive agents for colon cancer work inside cells

October 9, 2007

Johns Hopkins scientists have developed a potentially novel way to fight colorectal cancer using tiny molecules to deliver potent barrages of radiation inside cancer cells, unlike current treatments that bind to the surface of cells and attack from the outside and cause unwanted side effects.

In laboratory studies with normal and cancer cells, the new radiation delivery system proved able to specifically target colon cancer cells, and what’s left over is likely to be easily filtered out by the kidneys because the delivery system’s molecules are so small.

As reported online in PLoS One on October 3, Hopkins colorectal cancer specialists John Abraham, Ph.D., and Stephen Meltzer, M.D. -working with the notion that small molecules generally make better treatment packages-designed small bits of protein only 10 amino acids long as the foundation for their drugs. By contrast, antibodies used to deliver radiation or chemicals can be over one thousand amino acids long.

The team attached radioactive phosphorous, P32, as a test of how well their peptides worked and “to our surprise, our first tests showed that cells were ingesting these molecules, thus transferring the radiation inside and killing them by breaking up their DNA and proteins,” Abraham says.

While cautioning that the new radiation delivery system is still far from ready for use in people, Abraham notes that P32 gives off high energy that can penetrate through 5 millimeters of human tissue, making it a good candidate to tackle colon cancer since colon cancer cells can often form large, thick tumors into which drugs may not penetrate very well. In addition, P32-labeled peptides may serve another valuable use: to find small metastases or recurrences of colon tumors while they are still small enough to treat. Images of the body can be taken of the labeled peptides as they bind, revealing where stray tumor cells may be nesting.

Abraham, Meltzer and their team then designed and tested a variety of P32-peptides on 18 normal and cancerous human cell samples. The most potent peptide, MA5, could bind to adenocarcinoma cells, which make up 95 percent of all colon cancers, 150 times more strongly than other cell types and be transferred inside cells within 2 hours.

Source: Johns Hopkins Medical Institutions

Explore further: Researchers investigate new strategy to block growth of colon cancer cells

Related Stories

Nanoparticle drug cocktail could help treat lethal cancers

September 16, 2016

Cancer treatments that mobilize the body's immune system to fight the disease have generated a lot of excitement in the past few years. One form of immunotherapy called checkpoint blockade is especially promising. But while ...

Improved microendoscope brings cervical cancer into focus

September 15, 2016

Rice University researchers have added a clever spin—a rotating grating that removes out-of-focus light—to a cutting-edge, minimally invasive fiber-optic microscope that lets oncologists and surgeons zoom in on cancer ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.